共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper outlines the development of a multi-disciplinary strategy to focus exploration for economic kimberlites on the Ekati property. High-resolution aeromagnetic data provide an over-arching spatial and magnetostratigraphic framework for exploration and kimberlite discovery at Ekati, and hence also for this investigation. The temporal, geomagnetic, spatial and related attributes of kimberlites with variable diamond content have been constrained by judiciously augmenting the information gathered during routine exploration with detailed, laboratory-based or field-based investigations. The natural remanent magnetisation of 36 Ekati kimberlites has been correlated with their age as determined by isotopic dating techniques, and placed in the context of a well-constrained geomagnetic polarity timescale. Kimberlite magmatism occurred over the period 75 to 45 Ma, in at least five temporally discrete intrusive episodes. Based on current evidence, the older kimberlites (75 to 59 Ma) have low diamond contents and are distributed throughout the property. Younger kimberlites (56 to 45 Ma) have moderate to high diamond contents and occur in three distinct intrusive corridors with NNE to NE orientations. Economic kimberlite pipes erupted at 55.4±0.4 Ma along the A154-Lynx intrusive corridor, which is 7 km wide and oriented at 015°, and at 53.2±0.3 Ma along the Panda intrusive corridor, which is 1 km wide and oriented at 038°. The intrusion ages straddle a paleopole reversal at Chron C24n, consistent with the observation that the older economic kimberlites present as aeromagnetic “low” anomalies while the younger economic pipes are characterised as aeromagnetic “highs”. The aeromagnetic responses for these kimberlites are generally muted because they contain volcaniclastic rock types with low magnetic susceptibility. Kimberlites throughout the Ekati property carry a primary natural magnetic remanence (NRM) vector in Ti-bearing groundmass magnetite, and it dominates over vectors related to induced magnetisation. Magnetostratigraphic correlation of Ekati kimberlites may therefore present a powerful adjunct to existing exploration techniques, mainly because the diamond content of Ekati kimberlites apparently is related more to the age of eruption than to any other parameter investigated in this work. 相似文献
2.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO 2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant. 相似文献
3.
New Rb–Sr age determinations using macrocrystal phlogopite are presented for 27 kimberlites from the Ekati property of the Lac de Gras region, Slave Province, Canada. These new data show that kimberlite magmatism at Ekati ranges in age from at least Late Paleocene (61 Ma) to Middle Eocene time (45 Ma). Older, perovskite-bearing kimberlites from Ekati extend this age range to Late Cretaceous time (74 Ma). Within this age range, emplacement episodes at 48, 51–53, 55–56 and 59–61 Ma can be recognized. Middle Eocene kimberlite magmatism of the previously dated Mark kimberlite (47.5 Ma) is shown to include four other pipes from the east-central Ekati property. A single kimberlite (Aaron) may be younger than the 47.5 Ma Mark kimberlite. The economically important Panda kimberlite is precisely dated in this study to be 53.3±0.6 Ma using the phlogopite isochron method, and up to six additional kimberlites from the central Ekati property have Early Eocene ages indistinguishable from that of Panda, including the Koala and Koala North occurrences. Late Paleocene 55–56 Ma kimberlite magmatism, represented by the Diavik kimberlite pipes adjacent to the southeastern Ekati property, is shown to extend onto the southeastern Ekati property and includes three, and possibly four, kimberlites. A precise eight-point phlogopite isochron for the Cobra South kimberlite yields an emplacement age of 59.7±0.4 Ma; eight other kimberlites from across the Ekati property have similar Late Paleocene Rb–Sr model ages. The addition of 27 new emplacement ages for kimberlites from the Ekati property confirms that kimberlite magmatism from the central Slave Province is geologically young, despite ages ranging back to Cambrian time from elsewhere in the Slave Province. With the available geochronologic database, Lac de Gras kimberlites with the highest diamond potential are currently restricted to the 51–53 and 55–56 Ma periods of kimberlite magmatism. 相似文献
4.
A suite of fresh, Late Cretaceous to Eocene hypabyssal kimberlites from the Lac de Gras field were studied in order to understand better carbonate, silicate and oxide paragenesis. The samples have excellent preservation of textures and primary mineralogy and are archetypal or Group 1 kimberlite. Five kimberlite localities are identified as calcite-bearing based on the presence of high Sr–Ba calcite as phenocrysts, microphenocrysts and in segregations. Three kimberlite localities are identified as dolomite-bearing based on the presence of mixed calcite–dolomite segregations containing oscillatory and banded textures of calcite–dolomite solid solution and dolomite (±magnesite). Sr–Ba calcite are characterized by high XCa (>0.95) and are enriched in Sr (4900–11,100 ppm) and Ba (3200–14,200 ppm). The calcite–dolomite and dolomite–magnesite solid solution compositions span the XCa range from 0.42 to 0.95, and typically have Sr and Ba contents in the range of 1000–4000 ppm. The carbonate, silicate and oxide mineral compositions suggest that the origin of the calcite-bearing versus dolomite-bearing kimberlites studied is related to subtle differences in parent magma composition, in particular, the CO 2/H 2O ratio. Formation of the carbonates reflects the latter part of a protracted magmatic crystallization sequence, in which Sr–Ba calcite precipitates from an evolved kimberlite melt. Subsequently, calcite–dolomite solid solution and dolomite is precipitated from localized, Mg-rich carbonate fluids at relatively high temperatures (higher than serpentine stability). 相似文献
5.
Seismic reflection techniques are, for the first time, used to image a thin, diamondiferous, kimberlite dyke from subcrop to depths greater than 1300 m. Exploration for vertical kimberlite pipes generally utilizes potential field techniques that often fail to reveal subhorizontal or shallow-dipping intrusions. In contrast, seismic reflection methods are well suited for imaging targets with this geometry. Therefore, in order to evaluate seismic reflection as a tool for subhorizontal kimberlite dyke/sill exploration and mine planning, a feasibility study and subsequent seismic survey were undertaken on the diamondiferous Snap Lake dyke (Northwest Territories, Canada). A substantial drilling program has mapped the dyke as a gently dipping sheet that averages 2–3 m in thickness. The detailed structural and composition data available at Snap Lake provides a unique opportunity to test reflection techniques on a well-sampled deposit. The feasibility study involved measuring P-velocities and densities of cores drilled from the kimberlite and host rocks. These data were used to model reflection amplitudes, evaluate resolution limitations, and determine the acquisition parameters for the reflection survey. Two 2-D lines were acquired that provide comparative datasets for different sources (explosive and vibroseis) and ground types (land and lake ice). In addition, the exploration-scale survey incorporated high fold (40–260 nominal) and long offsets (3260 m). The explosive-source profile recorded on land yielded a superb image of the dyke from depths of 60 m to more than 1300 m over a lateral distance of 5700 m. The seismic image correlates well with adjacent drill hole data and adds considerable detail to the topography of the kimberlite sheet determined by drilling. The vibroseis source also imaged the dyke, but only when sources and geophones were on land; the dyke was not imaged beneath the ice due to reverberation and attenuation effects. The frequency response and unusually strong reflection amplitudes from the dyke indicate the importance of tuning effects and multiples for this type of target and acquisition environment. Apparent correlations between reflection amplitudes and dyke structure (e.g., thickness, feathering, 3-D geometry) suggest that seismic reflection data may be valuable for guiding drilling programs. The results demonstrate that, in the appropriate situation, seismic methods have great potential for use in kimberlite exploration, subsurface mapping, and detailed imaging for mine development purposes. 相似文献
6.
In northwestern Canada, iron-formation occurs as part of the Rapitan Group, a dominantly sedimentary succession of probable Late Precambrian age. The Rapitan Group contains abundant evidence of glaciogenic deposition. It includes massive mixtites which contain numerous faceted and striated clasts. Finely bedded and laminated sedimentary rocks of the Lower Rapitan contain many large isolated (ice-rafted?) intra- and extra-basinal clasts. The Lower and Middle Rapitan are interpreted as products of a glacial marine regime. The iron-formation is interbedded with thin mixtite beds and contains large exotic clasts which are probably indicative of the existence of floating ice at the time of deposition of at least part of the iron-formation. If the apparently low paleolatitudes are confirmed, then glacial marine interpretation of the Rapitan, and the probably correlative Toby Conglomerate of southern British Columbia, support the postulate of a very extensive Late Precambrian ice sheet in North America.Similar iron-formations of similar age are present in South America (Jacadigo Series), in South-West Africa (Damara Supergroup) and in South Australia (Yudnamutana Sub-Group). All of these iron-formations are associated with glaciogenic rocks. In addition to the iron-formations, dolostones, limestones and evaporites (?) are intimately associated with Late Precambrian mixtites, considered by many to be glaciogenic.Huronian (Early Proterozoic) and correlative sequences of North America, and rocks of similar age in South Africa also contain closely juxtaposed undoubted glaciogenic rocks, iron-formations, dolostones and aluminous quartzites. The dolostones and aluminous sedimentary rocks have been interpreted as having formed under warm climatic conditions, but might also be explained by invoking higher PCO2 levels in the Early Proterozoic atmosphere. By analogy with the Huronian succession, preservation of “warm climate” indicators in mixtite-bearing Late Precambrian sequences does not preclude a glacial origin for the mixtites. 相似文献
7.
We have performed dissections of two diamondiferous eclogites (UX-1 and U33/1) from the Udachnaya kimberlite, Yakutia in order to understand the nature of diamond formation and the relationship between the diamonds, their mineral inclusions, and host eclogite minerals. Diamonds were carefully recovered from each xenolith, based upon high-resolution X-ray tomography images and three-dimensional models. The nature and physical properties of minerals, in direct contact with diamonds, were investigated at the time of diamond extraction. Polished sections of the eclogites were made, containing the mould areas of the diamonds, to further investigate the chemical compositions of the host minerals and the phases that were in contact with diamonds. Major- and minor-element compositions of silicate and sulfide mineral inclusions in diamonds show variations among each other, and from those in the host eclogites. Oxygen isotope compositions of one garnet and five clinopyroxene inclusions in diamonds from another Udachnaya eclogite (U51) span the entire range recorded for eclogite xenoliths from Udachnaya. In addition, the reported compositions of almost all clinopyroxene inclusions in U51 diamonds exhibit positive Eu anomaly. This feature, together with the oxygen isotopic characteristics, is consistent with the well-established hypothesis of subduction origin for Udachnaya eclogite xenoliths. It is intuitive to expect that all eclogite xenoliths in a particular kimberlite should have common heritage, at least with respect to their included diamonds. However, the variation in the composition of multiple inclusions within diamonds, and among diamonds, from the same eclogite indicates the involvement of complex processes in diamond genesis, at least in the eclogite xenoliths from Yakutia that we have studied. 相似文献
8.
Ennadai Lake, in the forest-tundra ecotonal region of Keewatin, Northwest Territories, Canada, has been the subject of several paleoecological investigations (palynology, plant macrofossils, fossil soils). This study concerns Holocene insect fossils at Ennadai, a new approach in a region shown to be sensitive to climatic change. The Ennadai I site yielded 53 taxa, representing 13 families of Coleoptera and 7 families of other insects and arachnids, including abundant ants. These fossils range in age from about 6300 to 630 yr B.P. The Ennadai II site produced fossils of 58 taxa, including 13 beetle families and 15 families of other arthropods, ranging in age from 4700 to 870 yr B.P. The insect evidence suggests the presence of trees in the Ennadai region from 6000 to 2200 yr B.P. A conifer pollen decline from 4800 to 4500 yr B.P. at Ennadai has previously been interpreted as an opening up or retreat of forest in response to climatic cooling, but the insect fossils reveal the continued presence of trees during this interval. Both insect assemblages suggest trends of forest retreat and tundra expansion between about 2200 and 1500 yr B.P., presumably due to climatic cooling, with a return of woodland by about 1000 yr B.P. 相似文献
9.
Molecular and isotopic analyses of core gas samples from 3 permafrost research core holes (92GSCTAGLU, 92GSCKUMAK, 92GSCUNIPKAT; sample core depths ranging from 0.36 to 413.82 m) in the Mackenzie Delta of the Northwest Territories of Canada reveal the presence of hydrocarbon gases from both microbial and thermogenic sources. Analyses of most headspace and blended gas samples from the ice-bonded permafrost portion of the core holes yielded C 1/(C 2+C 3) hydrocarbon gas ratios and CH 4–C isotopic compositions (δ 13C CH 4) indicative of microbially sourced CH 4 gas. However, near the base of ice-bonded permafrost and into the underlying non-frozen stratigraphic section, an increase in ethane (C 2) concentrations, decreases in C 1/(C 2+C 3) hydrocarbon gas ratios, and CH 4–C isotopic (δ 13C CH 4) data indicate the presence of hydrocarbon gases derived from a thermogenic source. The thermogenic gas below permafrost in the Mackenzie Delta likely migrated from deeper hydrocarbon accumulations and/or directly from thermally mature hydrocarbon source rocks. 相似文献
10.
Meta-graywacke and meta-argillite of Archean age near Yellowknife contain biotite, cordierite, gedrite and sillimanite isograds towards the Sparrow Lake granite pluton. The chemistry of biotite, cordierite, gedrite and garnet in rocks that up-grade from the cordierite isograd indicate a small range of chemical composition, particularly with reference to Mg, Fe and Mn. The analyses show further that among the coexisting ferromagnesian minerals Fe/Fe+ Mg ratio decreases in the sequence: garnet, gedrite, biotite, cordierite while Mn/Fe+Mg+Mn ratio decreases in the sequence garnet, gedrite, cordierite, biotite. The same order is also observed in the distribution diagrams. The regular distribution of Mg, Fe and Mn among the coexisting phases demonstrate that chemical equilibrium was attained and preserved in these Archean rocks. Mg-Fe distribution between cordierite and biotite appears to be dependent on the temperature of crystallization or metamorphic grade. 相似文献
11.
In north-central Wopmay Orogen, syntectonic low-P(Buchan-type) suites of mineral isograds outline regional metamorphic temperature culminations that are associated, at the higher structural levels, with emplacement of early Proterozoic plutons in the west part of a deformed and eastward transported continental margin prism. The mapped isograds mark the first occurrence of biotite, staurolite, andalusite, sillimanite, sillimanite-K feldspar and K feldspar-plagioclase-quartz ± muscovite (granitic) pods in metapelites, with increasing proximity to the plutons. Microprobe analyses and field observations have resulted in the formulation of reactions for the 'ideal'pelitic system K 2O-Na 2O-FeO-MgO-Al 2O 3-SiO 2-H 2O-Al 2O 3-SiO 2-H 2O, to account for the various mineral assemblages of each metamorphic zone. A P-T petrogenetic grid showing erosion surface P-T curves for the northern Wopmay Orogen pelites, compiled on the basis of the mapped isograds and the inferred reaction(s) for each metamorphic zone, documents a variation in exposed metamorphic pressure ranging between 2 and 4 kbar. The configuration of a new bathograd, based on the invariant model reaction sillimanite + K feldspar + plagioclase + biotite + quartz + vapor ± muscovite + liquid and interpolated across three metamorphic suites, is consistent with a major regional structure culmination and with independently determined pressures obtained from anorthite-grossular-quartz-Al 2SiO 5 geobarometry. The positive correlation between the configuration of the bathograd and the structural and pressure culmination points to the pressure-dependence of anatectic-granitic-pod mineral associations. 相似文献
12.
Diamond exploration in India over the past decade has led to the discovery of over 80 kimberlite-inferred and lamproite-related intrusions in three of the four major Archean cratons that dominate the subcontinent. These intrusions are Proterozoic (1.1 Ga), and are structurally controlled: locally (at the intersections of faults); regionally (in a 200 km wide, 1000 km long diamond corridor); and globally (in the reconstructed supercontinent of Rodinia). The geochemistry of 57 samples from 13 intrusions in the southern Dharwar Craton of Andhra Pradesh has been determined by XRF spectrometry. The bodies are iron-rich with mg#=50–70 and are neither archetypal kimberlites nor ideal lamproites; this may be the underlying reason that conventional exploration techniques have thus far failed to locate the primary sources of India's historically famous diamonds. The two major fields of kimberlite-clan rocks (KCR) in the Dharwar Craton, Wajrakur and Narayanpet, are separated by a NW–SE trending, transcontinental (Mumbai-Chennai) gravity lineament. About 80% of intrusions in Wajrakur are diamondiferous, but diamonds have not yet been reported in Narayanpet. The gravity anomaly may mark the boundary of an architectural modification in the keel of the sub-continental lithosphere, a suggestion that is supported by differences in kimberlite mineralogy, chemistry, mantle xenoliths, structural setting and crustal host rocks. 相似文献
13.
A sediment core from Lake BC01 (75°10.945′N, 111°55.181′W, 225 m asl) on south-central Melville Island, NWT, Canada, provides the first continuous postglacial environmental record for the region. Fossil pollen results indicate that the postglacial landscape was dominated by Poaceae and Salix, typical of a High Arctic plant community, whereas the Arctic herb Oxyria underwent a gradual increase during the late Holocene. Pollen-based climate reconstructions suggests the presence of a cold and dry period ~12,000 cal yr BP, possibly representing the Younger Dryas, followed by warmer and wetter conditions from 11,000 to 5000 cal yr BP, likely reflective of the Holocene Thermal Maximum. The climate then underwent a gradual cooling and drying from 5000 cal yr BP to the present, suggesting a late Holocene neoglacial cooling. Diatom preservation was poor prior to 5000 cal yr BP, when conditions were warmest, suggesting that diatom dissolution may in part be climatically controlled. Diatom concentrations were highest ~4500 cal yr BP but then decreased substantially by 3500 cal yr BP and remained low before recovering slightly in the 20th century. An abrupt warming occurred during the past 70 yr at the site, although the magnitude of this warming did not exceed that of the early Holocene. 相似文献
14.
Rivers in the Northwest Territories draining the Canadian Shield in the zone of continuous permafrost have sulfate yields ranging from 3 to 6 meq m −2 yr −1. Stable isotope ratios of sulfate sulfur from these rivers range from −0.91 to +7.01%. The negative value obtained for the Quoich River may indicate the presence of reduced sulfur compounds in its watershed. Results for the Tree. Ellice and Back Rivers may have been influenced by seasalt. Results for the other rivers are very similar to those obtained for surface waters at lower latitudes (47°N), indicating that the processes affecting the isotopic ratios of sulfate sulfur in surface waters operate similarly at 65°N and at 47°N. 相似文献
15.
The Hornby Bay Group is a Middle Proterozoic 2.5 km-thick succession of terrestrial siliciclastics overlain by marine siliciclastics and carbonates. A sequence of conglomeratic and arenaceous rocks at the base of the group contains more than 500 m of mature hematitic quartz arenite interpreted to have been deposited by migrating aeolian bedforms. Bedforms and facies patterns of modern aeolian deposits provided a basis for recognizing two sequences of aeolian arenite. Both sequences interfinger with alluvial—wadi fan conglomerates and arenites deposited by braided streams. Depositional processes, facies patterns and paleotopographic position of the arenites are consistent with modern sand sea dynamics.Distal aeolian facies in both sequences are composed of trough crossbed megasets deposited by climbing, sinuous-crested, transverse dunes. Megasets comprise a gradational assemblage of tabular to wedge-planar cosets formed by deflation/reactivation of dune lee slopes and migration of smaller superposed aeolian bedforms (small dunes and wind ripples). Megasets in the proximal facies are thinner, display composite internal stratification and have a tabular-planar geometry which suggests that they were formed by smaller, straight-crested transverse dunes. Most stratification within the crossbeds is inferred to have formed by the downwind climbing of aeolian ripples across the lee slopes of dunes.Remarkably few Precambrian aeolian deposits have been reported previously. This seems anomalous, because most Precambrian fluvial sediments appear to have been deposited by low sinuosity (braided) streams, the emergent parts of which are prime areas for aeolian deflation. Frequent floods and rapid lateral migration of Precambrian humid climate fluvial systems probably restricted aeolianite deposition to arid paleoclimates. Thus the apparent anomaly may reflect non-recognition and/or non-preservation of aeolianites and/or variations in some aspect of sand sea formation and migration unique to the Precambrian. Reconstruction of the Hornby Bay Group aeolianites using recently developed criteria for their recognition suggests that the latter reason did not exert a strong influence. 相似文献
16.
Archaean meta-sediments near Yellowknife, Canada, exhibit alow-pressure facies series and broad metamorphic zonation rounda central pluton. Meta-pelites and meta-greywackes from thebiotite zone have been studied using analyses of 59 mineralsand 14 rocks. Mineral compositions were controlled by both host-rockcomposition and metamorphic grade. Increased grade commonly imposed on the minerals a progressivecompositional maturation. This involved progressive compositionalchange (especially in meta-greywacke biotites) and/or narrowingof compositional range (particularly in muscovites). Specificeffects of increased grade are as follows. Biotites in meta-greywackesexhibit increased Mg/Fe and Na/K but decreased (Na+K) content.Biotites in meta-pelites change little except for increasedAl IV/Si. The muscovites display decreasing maximum Si contents,increased Al VI at the expense of Fe and Mg, and increased Na/K.The chlorites show only a slight general increase in Mg/Fe. Bulk compositional control is manifested in various ways. Insome instances minerals from subtly different rock types areperceptibly distinct; in others the pro-grade maturation trendsof minerals in these rock types are different. Thus Si is moreabundant in meta-greywacke biotites than in meta-pelite biotitesand (Na+Ba+K) content of muscovites is greater in meta-greywackes. The observed features are used to deduce mechanisms of controlby grade and bulk composition and to discuss general circumstancesunder which they operate. 相似文献
17.
The 613±6 Ma Anuri kimberlite is a pipelike body comprising two lobes with a combined surface area of approximately 4–5 ha. The pipe is infilled with two contrasting rock types: volcaniclastic kimberlite (VK) and, less common, hypabyssal kimberlite (HK). The HK is an archetypal kimberlite composed of macrocrysts of olivine, spinel, mica, rare eclogitic garnet and clinopyroxene with microphenocrysts of olivine and groundmass spinel, phlogopite, apatite and perovskite in a serpentine–calcite–phlogopite matrix. The Ba enrichment of phlogopite, the compositional trends of both primary spinel and phlogopite, as well as the composition of the mantle-derived xenocrysts, are also characteristic of kimberlite. The present-day country rocks are granitoids; however, the incorporation of sedimentary xenoliths in the HK shows that the Archean granitoid basement terrain, at least locally, was capped by younger Proterozoic sediments at the time of emplacement. The sediments have since been removed by erosion. HK is confined to the deeper eastern parts of the Anuri pipe. It is suggested that the HK was emplaced prior to the dominant VK as a separate phase of kimberlite. The HK must have ascended to high stratigraphic levels to allow incorporation of Proterozoic sediments as xenoliths. Most of the Anuri kimberlite is infilled with VK which is composed of variable proportions of juvenile lapilli, discrete olivine macrocrysts, country rock xenoliths and mantle-derived xenocrysts. It is proposed that the explosive breakthrough of a second batch of kimberlite magma formed the western lobe resulting in the excavation of the main pipe. Much of the resulting fragmented country rock material was deposited in extra crater deposits. Pyroclastic eruption(s) of kimberlite must have occurred to form the common juvenile lapilli present in the VKs. The VK is variable in nature and can be subdivided into four types: volcaniclastic kimberlite breccia, magmaclast-rich volcaniclastic kimberlite breccia, finer grained volcaniclastic kimberlite breccia and lithic-rich volcaniclastic kimberlite breccia. The variations between these subtypes reflect different depositional processes. These processes are difficult to determine but could include primary pyroclastic deposition and/or resedimentation. There is some similarity between Anuri and the Lac de Gras kimberlites, with variable types of VK forming the dominant infill of small, steep-sided pipes excavated into crystalline Archean basement and sedimentary cover. 相似文献
19.
Primary economic diamond deposit modelling has rarely been documented in the public domain. This paper presents information collected from significantly diamondiferous kimberlite pipes located near Lac de Gras in the Arctic region of Canada's Northwest Territories. The resource estimation process is widely accepted as a cyclical iteration of data collection and evaluation processes. A resource database is typically assembled from a large inventory of exploration data. These data must be methodically quality checked before accepting the information for interpretive analysis. The foundation of a mineral resource model is based on clear understanding of the geology model along with subsidiary grade, volume, and density models. Defining these models is an iterative process of statistical analyses and interpretation. As a deposit progresses along a path towards development, reducing risk to acceptable levels is critical for identifying and realizing its maximum value. 相似文献
20.
A partial steppe bison ( Bison priscus) carcass was recovered at Tsiigehtchic, near the confluence of the Arctic Red and Mackenzie Rivers, Northwest Territories, Canada in September of 2007. The carcass includes a complete cranium with horn cores and sheaths, several complete post-cranial elements (many of which have some mummified soft tissue), intestines and a large piece of hide. A piece of metacarpal bone was subsampled and yielded an AMS radiocarbon age of 11,830 ± 45 14C yr BP (OxA-18549). Mitochondrial DNA sequenced from a hair sample confirms that Tsiigehtchic steppe bison ( Bison priscus) did not belong to the lineage that eventually gave rise to modern bison ( Bison bison). This is the first radiocarbon dated Bison priscus in the Mackenzie River valley, and to our knowledge, the first reported Pleistocene mammal soft tissue remains from the glaciated regions of northern Canada. Investigation of the recovery site indicates that the steppe bison was released from the permafrost during a landslide within unconsolidated glacial outwash gravel. These data indicate that the lower Mackenzie River valley was ice free and inhabited by steppe bison by 11,800 14C years ago. This date is important for the deglacial chronology of the Laurentide Ice Sheet and the opening of the northern portal to the Ice Free Corridor. The presence of steppe bison raises further potential for the discovery of more late Pleistocene fauna, and possibly archaeological evidence, in the region. 相似文献
|