首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨波  杨莉  孟文祥 《岩矿测试》2022,(2):185-198
随着对钪资源需求的不断增加,世界各国近年陆续开展钪成矿机理研究及找矿工作,核心内容之一是厘清钪的赋存特征.据前人研究,各类钪矿床中钪主要以类质同象、离子吸附形式存在,目前发现的含钪矿物种类已逾800种.对于白云鄂博矿床,钪资源储量较大,无独立钪矿物产出,钪以类质同象形式进入其他矿物,分布分散、含量低.囿于测试技术及取样...  相似文献   

2.
The Boziguoer A-type granitoids in Baicheng County,Xinjiang,belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks.The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite,an aegirine or arfvedsonite alkali feldspar granite,and a biotite alkali feldspar syenite.The major rock-forming minerals are albite,K-feldspar,quartz,arfvedsonite,aegirine,and siderophyllite.The accessory minerals are mainly zircon,pyrochlore,thorite,fluorite,monazite,bastnaesite,xenotime,and astrophyllite.The chemical composition of the alkaline granitoids show that SiO2 varies from 64.55% to 72.29% with a mean value of 67.32%,Na2O+K2O is high (9.85%-11.87%) with a mean of 11.14%,K2O is 2.39%-5.47% (mean =4.73%),the K2O/Na2O ratios are 0.31-0.96,Al2O3 ranges from 12.58% to 15.44%,and total FeOT is between 2.35% and 5.65%.CaO,MgO,MnO,and TiO2 are low.The REE content is high and the total SREE is (263-1219) ppm (mean =776 ppm),showing LREE enrichment and HREE depletion with strong negative Eu anomalies.In addition,the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type.The Zr content is (113-1246) ppm (mean =594 ppm),Zr+Nb+Ce+Y is between (478-2203) ppm with a mean of 1362 ppm.Furthermore,the alkaline granitoids have high HFSE (Ga,Nb,Ta,Zr,and Hf) content and low LILE (Ba,K,and Sr) content.The Nb/Ta ratio varies from 7.23 to 32.59 (mean =16.59) and the Zr/Hf ratio is 16.69-58.04 (mean =36.80).The zircons are depleted in LREE and enriched in HREE.The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly.The Boziguoer A-type granitoids share similar features with A1-type granites.The average temperature of the granitic magma was estimated at 832-839℃.The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature,anhydrous,and low oxygen fugacity conditions.  相似文献   

3.
The paper discusses the mineralogy and geochemistry of altered rocks associated with calcite and dolomite–ankerite carbonatites of the Onguren dyke–vein complex in the Western Transbaikal Region. The alteration processes in the Early Proterozoic metamorphic complex and synmetamorphic granite hosting carbonatite are areal microclinization and riebeckitization; carbonates, phlogopite, apatite, and aegirine occur in the near-contact zones of the dolomite–ankerite carbonatite veins; and silicification is displayed within separated zones adjacent to the veins. In aluminosilicate rocks, microclinization was accompanied by an increasing content of K, Fe3+, Ti, Nb (up to 460 ppm), Th, Cu, and REE; Na, Ti, Fe3+, Mg, Nb (up to 1500 ppm), Zr (up to 2800 ppm), Ta, Th, Hf, and REE accumulated in the inner zone of the riebeckitization column. High contents of Ln Ce (up to 11200 ppm), U (23 ppm), Sr (up to 7000 ppm), Li (up to 400 ppm), Zn (up to 600 ppm), and Th (up to 700 ppm) are typical of apatite–phlogopite–riebeckite altered rock; silicified rock contains up to (ppm): 2000 Th, 20 U, 13000 Ln Ce, and 5000 Ва. Ilmenite and later rutile are the major Nb carriers in alkali altered rocks. These minerals contain up to 2 and 7 wt % Nb2O5, respectively. In addition, ferrocolumbite and aeschynite-(Ce) occur in microcline and riebeckite altered rocks. Fluorapatite containing up to 2.7 wt % (Ln Ce)2O3, monazite-(Ce), cerite-(Ce), ferriallanite-(Ce), and aeschynite-(Ce) are the REE carriers in riebeckite altered rock. Bastnäsite-(Ce), rhabdophane-group minerals, and xenotime-(Y) are typical of silicified rock. Thorite, monazite-(Ce), and rhabdophane-group minerals are the Th carriers.  相似文献   

4.
Dehoo manganese deposit is located 52 km to the south of Zahedan in Sistan and Baluchestan Province, southeastern Iran. This deposit that lies in the central part of the Iranian Flysch Zone is lenticular in shape and lies above the micritic limestone-radiolarite cherts of the upper Cretaceous ophiolite unit. It is hosted within the reddish to brown radiolarite cherts and in places interlinks with them, so that the radiolarite chert packages play a key role for Mn mineralization in the region. Investigated ore-paragenetic successions and the geochemical characteristics of the Dehoo deposit were studied by means of major oxide, trace, and rare earth element (REE) contents that provide information as to the mineral origin. Strong positive correlations were found between major oxides and trace elements (Al2O3-TiO2, r = 0.95; TiO2-MgO, r = 0.94; Fe2O3-Al2O3, r = 0.90; MgO-Al2O3, r = 0.84; MgO-Fe2O3, r = 0.88; Fe2O3-TiO2, r = 0.91; Fe2O3-K2O, r = 0.74; Al2O3-K2O, r = 0.69; Al2O3-V, r = 0.72; TiO2-V, r = 0.73, and MgO-V, r = 0.69) that testify to the contribution of mafic terrigenous detrital material to the deposit. Chondrite-normalized REE patterns of all ore samples are characterized by negative Ce (0.06–0.15, average 0.10) and slightly positive Eu (0.29–0.45, average 0.36) anomalies. Based on ratios of Mn/Fe (average 56.23), Co/Ni (average 0.33), Co/Zn (average 0.38), U/Th (average 3.40), La/Ce (average 1.45), Lan/Ndn (average 2.16), Dyn/Ybn (average 0.33), and light REE/heavy REE (average 8.40; LREE > HREE), as well as Ba (average 920 ppm) and total REE contents (average 6.96 ppm) negative Ce and positive Eu anomalies, Dehoo could be considered a predominantly submarine hydrothermal Mn deposit complemented by terrigenous detrital mafic material.  相似文献   

5.
The Haobugao deposit, located in the southern segment of the Great Xing'an Range, is a famous skarn‐related Pb‐Zn‐(Cu)‐(Fe) deposit in northern China. The results of our fluid inclusion research indicate that garnets of the early stage (I skarn stage) contain three types of fluid inclusions (consistent with the Mesozoic granites): vapor‐rich inclusions (type LV, with VH2O/(VH2O + LH2O) < 50 vol %, and the majority are 5–25 vol %), liquid‐rich two‐phase aqueous inclusions (type VL, with VH2O/(VH2O + LH2O) > 50 vol %, the majority are 60–80 vol %), and halite‐bearing multiphase inclusions (type SL). These different types of fluid inclusions are totally homogenized at similar temperatures (around 320–420°C), indicating that the ore‐forming fluids of the early mineralization stage may belong to a boiling fluid system. The hydrothermal fluids of the middle mineralization stage (II, magnetite‐quartz) are characterized by liquid‐rich two‐phase aqueous inclusions (type VL, homogenization temperatures of 309–439°C and salinities of 9.5–14.9 wt % NaCl eqv.) that coexist with vapor‐rich inclusions (type LV, homogenization temperatures of 284–365°C and salinities of 5.2–10.4 wt % NaCl eqv.). Minerals of the late mineralization stage (III sulfide‐quartz stage and IV sulfide‐calcite stage) only contain liquid‐rich aqueous inclusions (type VL). These inclusions are totally homogenized at temperatures of 145–240°C, and the calculated salinities range from 2.0 to 12.6 wt % NaCl eqv. Therefore, the ore‐forming fluids of the late stage are NaCl‐H2O‐type hydrothermal solutions of low to medium temperature and low salinity. The δD values and calculated δ18OSMOW values of ore‐forming fluids of the deposit are in the range of ?4.8 to 2.65‰ and ?127.3‰ to ?144.1‰, respectively, indicating that ore‐forming fluids of the Haobugao deposit originated from the mixing of magmatic fluid and meteoric water. The S‐Pb isotopic compositions of sulfides indicate that the ore‐forming materials are mainly derived from underlying magma. Zircon grains from the mineralization‐related granite in the mining area yield a weighted 206Pb/238U mean age of 144.8 ±0.8 Ma, which is consistent with a molybdenite Re‐Os model age (140.3 ±3.4 Ma). Therefore, the Haobugao deposit formed in the Early Cretaceous, and it is the product of a magmatic hydrothermal system.  相似文献   

6.
Copper–gold mineralization at the world‐class Batu Hijau porphyry deposit, Sumbawa Island, Indonesia, is closely related to the emplacement of multiple stages of tonalite porphyries. Petrographic examination indicates that at least two texturally distinct types of tonalite porphyries are currently recognized in the deposit, which are designated as “intermediate tonalite” and “young tonalite”. They are mineralogically identical, consisting of phenocrysts of plagioclase, hornblende, quartz, biotite and magnetite ± ilmenite, which are set in a medium‐coarse grained groundmass of plagioclase and quartz. The chemical composition of the rock‐forming minerals, including plagioclase, hornblende, biotite, magnetite and ilmenite in the tonalite porphyries was systematically analyzed by electron microprobe. The chemical data of these minerals were used to constrain the crystallization conditions and fluorine–chlorine fugacity of the corresponding tonalitic magma during its emplacement and crystallization. The crystallization conditions, including temperature (T), pressure (P) and oxygen fugacity (fO2), were calculated by applying the hornblende–plagioclase and magnetite–ilmenite thermometers and the Al‐in‐hornblende barometer. The thermobarometric data indicate that the tonalite porphyries were emplaced at 764 ± 22°C and 1.5 ± 0.3 × 105 kPa. If the pressure is assumed to be lithostatic, it is interpreted that the rim of hornblende and plagioclase phenocrysts crystallized at depths of approximately 5.5 km. As estimated from magnetite–ilmenite thermometry, the subsolidus conditions of the tonalite intrusion occurred at temperatures of 540–590°C and log fO2 ranging from ?20 to ?15 (between Ni‐NiO and hematite–magnetite buffers). This occurred at relatively high fO2 (oxidizing) condition. The fluorine–chlorine fugacity in the magma during crystallization was determined on the basis of the chemical composition of magmatic biotite. The calculation indicates that the fluorine–chlorine fugacity, represented by log (fH2O)/(fHF) and (fH2O)/(fHCl) in the corresponding tonalitic magma range from 4.31 to 4.63 and 3.62 to 3.79, respectively. The chlorine fugacity (HCl) to water (H2O) is relatively higher than the fluorine fugacity (HF to water), reflecting a high activity of chlorine in the tonalitic magma during crystallization. The relatively higher activity of chlorine (rather than fluorine) may indicate the significant role of chloride complexes (CuCl2? and AuCl2?) in transporting and precipitating copper and gold at the Batu Hijau deposit.  相似文献   

7.
A granite‐related scheelite deposit has been recently discovered in the Wuyi metallogenic belt of southeast China. The veinlet–disseminated scheelite occurs mainly in the inner and outer contact zones of the porphyritic biotite granite, spatially associated with potassic feldspathization and silicification. Re–Os dating of molybdenite intergrowths with scheelite yield a well‐constrained isochron age of 170.4 ± 1.2 Ma, coeval with the LA–MC–ICP–MS concordant zircon age of porphyritic biotite granite (167.6 ± 2.2 Ma), indicating that the Lunwei W deposit was formed in the Middle Jurassic (~170 Ma). We identify three stages of ore formation (from early to late): (I) the quartz–K‐feldspar–scheelite stage; (II) the quartz–polymetallic sulfide stage; and (III) the quartz–carbonate stage. Based on petrographic observations and microthermometric criteria, the fluid inclusions in the scheelite and quartz are determined to be mainly aqueous two‐phase (liquid‐rich and gas‐rich) fluid inclusions, with minor gas‐pure and CO2‐bearing fluid inclusions. Ore‐forming fluids in the Lunwei W deposit show a successive decrease in temperature and salinity from Stage I to Stage III. The homogenization temperature decreases from an average of 299 °C in Stage I, through 251 °C in Stage II, to 212 °C in Stage III, with a corresponding change in salinity from an average of 5.8 wt.%, through 5.2 wt.%, to 3.4 wt.%. The ore‐forming fluids have intermediate to low temperatures and low salinities, belonging to the H2O–NaCl ± CO2 system. The δ18OH2O values vary from 1.8‰ to 3.3‰, and the δDV‐SMOW values vary from –66‰ to –76‰, suggesting that the ore‐forming fluid was primarily of magmatic water mixed with various amounts of meteoric water. Sulfur isotope compositions of sulfides (δ34S ranging from –1.1‰ to +2.4‰) and Re contents in molybdenite (1.45–19.25 µg/g, mean of 8.97 µg/g) indicate that the ore‐forming materials originated mainly in the crust. The primary mechanism for mineral deposition in the Lunwei W deposit was a decrease in temperature and the mixing of magmatic and meteoric water. The Lunwei deposit can be classified as a porphyry‐type scheelite deposit and is a product of widespread tungsten mineralization in South China. We summarize the geological characteristics of typical W deposits (the Xingluokeng, Shangfang, and Lunwei deposits) in the Wuyi metallogenic belt and suggest that porphyry and skarn scheelite deposits should be considered the principal exploration targets in this area.  相似文献   

8.
The Tongcun Mo porphyry deposit in northwest Zhejiang is hosted in three porphyry units: Huangbaikeng, Songjiazhuang, and Tongcun, from southwest to northeast. U–Pb zircon ages of 162?±?3.0 Ma for the Huangbaikeng porphyry, 159.9?±?3.0 Ma for the Songjiazhuang porphyry, and 167.6–155.6 Ma for the Tongcun porphyry indicate that these intrusions formed during the Jurassic and are most likely associated with the northwestward subduction of the Izanagi Plate. Trace element compositions of zircons from the Tongcun deposit constrain the oxygen fugacity (fO2) of the magma using zircon Ce anomalies and Ti-in-zircon temperatures. The average magmatic fO2 for the porphyries in the Tongcun deposit is fayalite–magnetite–quartz (FMQ)?+?2.7, which is similar to the Shapinggou (FMQ?+?3.2) and Dabaoshan (FMQ?+?3.5) Mo porphyry deposits, but much higher than that of the reduced Cretaceous ore-barren Shangjieshou porphyry (FMQ-1.1) around 8 km away from the Tongcun deposit. The distinct difference in magmatic oxygen fugacity between the Jurassic and Cretaceous porphyries may help to explain the absence of Mo porphyry mineralization in northwest Zhejiang during the Cretaceous.  相似文献   

9.
The Minim-Martap plateau bauxite deposit, located between the Minim and the Martap villages, is one of the 11 plateaus within the Minim-Martap bauxite region. The plateau has an elevation of 1294 m above sea level, with three to more 30 m thickness of bauxite horizon. These plateaus were formed as result of supergene weathering of volcanic rocks occurring as dissected flow basalt landscapes that form relatively flat plateau rising steeply from the surrounding granites. The bauxite deposit of the plateau is lateritic, with the surface of the plateau been completely covered by indurated caps. Seventeen bauxite samples were collected from the plateau and prepared for geochemical analysis. Whole rock analysis was carried out using the X-ray Fluorescence technique and ICP-MS was used for trace elements investigation. Statistical analysis reveals that average values of Al2O3 (54.87%), Fe2O3 (7.17%), SiO2 (2.44%), and TiO2 (4.54%) indicate the plateau bauxite deposit is an of a world class standard with very little impurities compared to the standard major element contents of bauxite (>?40% A12O3, less than <?20% Fe2O3, and less than <?8% combined SiO2). Abundant trace elements include Zr, Ce, Sr, V, Ba, La, Nd, Ga, and Nb. Weathering due to chemical alteration indices using the Ruxton ratio and CIA approaches revealed the plateau have undergone intense weathering process that formed the bauxite deposit. Three different classification systems indicate it as a low iron-rich bauxite deposit. Precursor rock investigation indicates the origin of the bauxite is mafic, basaltic andesite igneous rocks with intermediate pH (basic–acidic characteristic).  相似文献   

10.
Eight phosphatic porcelain sherds recovered from various historical sites in Charleston were analyzed by electron microprobe. Some sherds contain sulfur (2.3–3.1wt.% SO3); others contain only traces of this component. The analytical data suggest that the sulfurous sherds are Bow porcelain (London, Bowcock period, ca. 1755–1769). The origin(s) of the low‐S samples remains unidentified; one compositionally resembles “gold‐anchor period” (phosphatic) Chelsea porcelain (London, ca. 1756–1769) but its decoration is inconsistent with known wares produced by this factory during that era. The degree of vitrification is highly variable, particularly among the SO3‐poor samples. The melt phase is strongly enriched in incompatible elements (Ti, Fe, Na, K). The phosphate phase [calcined bone ash (hydroxyapatite)] in poorly vitrified samples hosts minute melt blebs, but remains porous. With increasing vitrification, these melt blebs increase in size and begin to coalesce, ultimately forming ameboid patches up to ∼10 μm in diameter. In the most vitrified samples, the coalesced melt “leaks” into the matrix, leaving behind a phosphate phase that lacks pores and melt and has a lower CaO/P2O5 ratio (=2.7, molecular proportions) than either hydroxyapatite (3.3) or β‐whitlockite (3.0). The two varieties of phosphate occur in some poorly vitrified samples, suggesting the recycling of high‐fired wasters (as “grog”) in their ceramic pastes. Melt compositions vary with contiguous mineralogy, accounting for their divergence from the ternary eutectic in the Ca3(PO4)2‐CaAl2Si2O8‐SiO2 system. The resorption of phosphate by the matrix melt virtually precludes recognition of anorthite formed by the “non‐phosphate glass equation.” © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Summary Bazzite, Be3Sc2Si6O18, the scandium analogue of beryl, is a rare accessory mineral together with ixiolite and pyrochlore of the cleavelandite-amazonite pegmatites at Heftetjern, Tordal, Telemark, Norway. Chemical investigation shows that it contains ca. 3 weight % Cs20. It is, therefore, a caesian bazzite.
Caesium-haltiger Bazzit in Granitpegmatiten von Tørdal, Telemark, Norwegen
Zusammenfassung Bazzit, Be3Sc2Si6O18, das Scandium-Analogon zu Beryll ist zusammen mit Scandium haltigem Ixiolit und Pyrochlor ein seltenes akzessorisches Mineral der Cleavelandit-Amazonit-Pegmatite von Heftetjern, Tørdal, Telemark, Norwegen. Seine Chemische Analyse zeigt ca. 3 Gew. % Cs2O; es handelt sich folglich um einen Caesium-haltigen Bazzit.


With 4 Figures  相似文献   

12.
Discovered and mined in recent years, the Jinchangliang gold deposit has not yet been studied in its genetic type. In this paper, the geological features of ore deposit, S isotopic composition, metallogenic age and elements geochemical of the granite closely related to mineralization were discussed. The results of the geological features of ore deposit and S isotopic composition show that ore-bearing hydrothermal solution was closely related with the intrusion of magmatic. The granite is characteristic of high silica SiO_2=72.38%–72.98%, high aluminum and Al_2O_3=14.22%–14.35%, low calcium CaO=0.16% –0.26%, and low value of FeOT/MgO(6.86–7.73), and rich in alkalis Na_2O+K_2O=9.11%–9.24%, suggesting that it is high-K calc-alkaline, highly fractionated, weak aluminum A-type granite. The REE patterns are inclined to right and show intense fractionation between LREE and HREE, without obvious negative Eu anomaly(δEu=0.80–0.84). The primitive mantle-normalized spidergrams are characterized by depletion of Ba, U, Ta, Nb, Zr, Ti and P, which implies that the granite has the characteristics of the crust-mantle mixing. S isotopes also indicate that the material source of gold deposit is closely related to the granite rocks. The LA-ICP-MS Zircon UPb age of the Damiao rock mass medium-fine grained monzogranite(belonging to the early IndoChina) is(245±1) Ma. It shows that Jinchangliang gold deposit was not formed in Yanshanian, but the early Indo-China. Specifically speaking, the deposit was formed in the collision stage of the North China plate and the Siberian plate.  相似文献   

13.
The Tomtor massif of Paleozoic ultramafic alkaline rocks and carbonatites is located in the northern part of the Sakha Republic (Yakutia). The massif (its total area is ~ 250 km2) is ~ 20 km in diameter, with a rounded shape and a concentrically zoned structure. The core of the massif consists of carbonatites surrounded by a discontinuous ring of ultramafic rocks and foidolites. The outer part is composed of alkali and nepheline syenites. All rocks are weathered and covered with eluvium, which is the thickest after carbonatites enriched in phosphates and REE. The weathering profile consists of four layers, from the top: kaolinite-crandallite, siderite, goethite, and francolite. The highest-grade ores are observed in the bedded deposit which fills depressions in “sagging” eluvium. The ores are laminated and cryptogranular, with high Nb, Y, Sc, and REE contents (on average, 4.5% Nb2O5, 7-10% REE2O3, 0.75% Y2O3, and 0.06% Sc2O3). The highest-grade ores are natural Nb and REE concentrates. The total REE content in some layers is > 10%. The morphologic features of the highest-grade phosphate ores from the northern part of the Burannyi site were studied. The ore-forming minerals belong to the pyrochlore group, crandallite group (goyazite), and monazite-Ce. The pyrochlore group minerals occur mainly as crystals that were completely replaced by barium-strontium pyrochlore and/or plumbopyrochlore but retained the original faces; also, they occur as numerous conchoidal fragments. The grains of the pyrochlore group minerals sometimes have a zonal structure, with an unaltered pyrochlore core and a reaction rim. Goyazite occurs predominantly as colloform grains. According to SEM and TEM data, monazite occurs in the ores as ~ 50 nm particles, which cover the outer part of halloysite tubes (800–3000 nm long and 300 nm in diameter) as a dense layer and make up peculiar biomorphic aggregates. The mineralogical data, the occurrence of biomorphic aggregates, and the close association of organic remains with ore minerals suggest that the high-grade ores of the Tomtor deposit, including the Burannyi site, resulted from a hydrothermal-sedimentary process with a presumably important role of bioaccumulation of REE phosphates.  相似文献   

14.
At the Zhelannoe quartz deposit, the content of monazite attains 0.5 wt % in unaltered sericitolite and 18 wt % in hydrothermally altered sericitolite. Two monazite generations, including four varieties, characterize the sequence of formation and alteration of sericitolite bodies at the Zhelannoe deposit. Monazite of the first generation occurs in unaltered sericitolite as prismatic and tabular crystals characterized by (Nd,Ce) > La and enrichment in HREEs and ThO2 (5–16 wt %). Its formation is accompanied crystallization of milk white quartz. Monazite of the second generation occurs in altered sericitolite as the product of recrystallization of the first-generation monazite. The large drusy crystals of second-generation monazite were formed similarly with Alpine-type veins. Monazite of the second generation is characterized by Ce > (La,Nd), low contents of HREEs and ThO2 (0.5–7 wt %) and high contents of CaO and SO3 (up to 3–5 wt %). Monazite of the second generation appeared as a result of local superimposed processes and is a characteristic feature of the Zhelannoe deposit.  相似文献   

15.
Wakefieldite‐(Nd), NdVO4, is a new mineral found from the Arase stratiform ferromanganese deposit in Kochi Prefecture, Shikoku Island, Japan. It is the Nd‐dominant analogue of wakefieldite‐(Y) and wakefieldite‐(Ce). The ferromanganese ore specimen mainly consists of hematite and caryopilite, and wakefieldite‐(Nd) is typically enclosed in caryopilite. Wakefieldite‐(Nd) is tetragonal, I41/amd, a = 7.338(16) Å, c = 6.509(19) Å, V = 350.5(18) Å3, Z = 4. The four strongest lines in the X‐ray diffraction pattern [d(Å), I/I0, hkl] using a Gandolfi camera are (3.67, 100, 200); (2.74, 51, 112); (4.84, 27, 101) and (1.89, 25, 312). Chemical composition of wakefieldite‐(Nd) are V2O3 35.25, As2O3 0.93, SiO2 0.14, MnO 1.45, Fe2O3 0.41, Y2O3 2.87, La2O3 7.61, Ce2O3 7.37, Pr2O3 6.04, Nd2O3 26.79, Sm2O3 4.41, Eu2O3 1.36, Gd2O3 3.41, Tb2O3 0.22, Dy2O3 1.41, Er2O3 0.10, total 99.77 wt.%. The empirical formula is (Nd0.403La0.118Ce0.114Pr0.093Y0.064Sm0.064Mn0.052Gd0.048Eu0.020Dy0.019Fe0.013Tb0.003Er0.001)1.012(V0.981As0.020Si0.006)1.007O4 on the basis of O = 4. The calculated density is 4.782 g/cm3. Microtexture and co‐existing relationship between wakefieldite‐(Nd) and caryopilite suggest that recrystallization and dehydration of Fe‐ and Mn‐oxyhydroxide led to the generation of hematite, caryopilite, rhodochrosite and wakefieldite‐(Nd) by the metamorphism during the accretion of the host unit of the Arase deposit. Chondrite‐normalized REE pattern of the host ferromanganese ore, which is regarded as oceanic metalliferous sediment in origin, shows negative Ce anomaly. Chemical composition of wakefieldite‐(Nd) reflects Ce‐depleted bulk composition of REE‐enriched ferromanganese ore.  相似文献   

16.
The Jilongshan skarn Cu–Au deposit is located at the Jiurui ore cluster region in the southwestern part of the Middle–Lower Yangtze River valley metallogenic belt. The region is characterized by NW‐, NNW‐ and EW‐trending faults and the mineralization occurs at the contact of lower Triassic carbonate rocks and Jurassic granodiorite porphyry intrusions. The intrusives are characterized by SiO2, K2O, and Na2O concentrations ranging from 61.66 to 67.8 wt.%, 3.29 to 5.65 wt.%, and 2.83 to 3.9 wt.%, respectively. Their A/CNK (A/CNK = n(Al2O3)/[n(CaO) + n(Na2O) + n(K2O)]) ratio, δEu, and δCe vary from 0.77 to 1.17, 0.86 to 1, and 0.88 to 0.96, respectively. The rocks show enrichment in light rare earth elements ((La/Yb)N = 7.61–12.94) and large ion lithophile elements (LILE), and depletion in high field strength elements (HFSE), such as Zr, Ti. They also display a peraluminous, high‐K calc‐alkaline signature typical of intrusives associated with skarn and porphyry Cu–Au–Mo polymetallic deposits. Laser ablation inductively coupled plasma spectrometry (LA‐ICP‐MS) zircon U–Pb age indicates that the granodiorite porphyry formed at 151.75 ± 0.70 Ma. A few inherited zircons with older ages (677 ± 10 Ma, 848 ± 11 Ma, 2645 ± 38 Ma, and 3411 ± 36 Ma) suggest the existence of an Archaean basement beneath the Middle–Lower Yangtze River region. The temperature of crystallization of the porphyry estimated from zircon thermometer ranges from 744.3 °C to 751.5 °C, and 634.04 °C to 823.8 °C. Molybdenite Re–Os dating shows that the Jilongshan deposit formed at 150.79 ± 0.82 Ma. The metallogeny and magmatism are correlated to mantle–crust interaction, associated with the subduction of the Pacific Plate from the east. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

18.
Karstic bauxite deposits are widespread in Central Guizhou Province, SW China, and high-grade ores are frequently sandwiched with overlying coal and underlying iron-rich layers and form a special “coal–bauxite–iron” structure. The Lindai deposit, which is one of the most representative karstic bauxite deposits in Central Guizhou Province, was selected as a case study. Based on textural features and iron abundances, bauxite ores in the Lindai deposit are divided into three types of ores, i.e., clastic, compact, and high-iron. The bauxite ores primarily comprise diaspore, boehmite, kaolinite, illite, and hematite with minor quartz, smectite, pyrite, zircon, rutile, anatase, and feldspar. The Al2O3 (53–76.8 wt.%) is the main chemical contents of the bauxite ore samples in the Lindai district, followed by SiO2, Fe2O3, TiO2, CaO, MgO, S, and P etc. Our geological data on the Lindai deposit indicated that the ore-bearing rock series and its underlying stratum have similar rare earth elements distribution pattern and similar Y/Ho, Zr/Hf, and Eu/Eu1 values; additionally, all ore-bearing rock samples are rich in MgO (range from 0.16 wt.% to 0.68 wt.%), and the plots of the dolomites and laterites lie almost on or close to the weathering line fit by the Al-bearing rocks in Zr vs. Hf and Nb vs. Ta diagrams; suggesting that the underlying Middle Cambrian Shilengshui Formation dolomite is the parent rock of bauxite resources in the Lindai district.Simulated weathering experiments on the modern laterite from the Shilengshui Formation dolomite in the Lindai bauxite deposit show that hydrogeological conditions are important for karstic bauxite formation: Si is most likely to migrate, its migration rate is several magnitudes higher than those of Al and Fe under natural conditions; the reducing inorganic acid condition is the most conducive to Al enrichment and Si removal; Fe does not migrate easily in groundwater, Al enrichment and Fe removal can occur only in acidic and reducing conditions with the presence of organic matter.The geological and experimental studies show that “coal–bauxite–iron” structure in Lindai deposit is formed under certain hydrogeological conditions, i.e., since lateritic bauxite or Al-rich laterite deposited upon the semi-closed karst depressions, Si can be continuously removed out under neutral/acidic groundwater conditions; the coal/carbonaceous rock overlying the bauxitic materials were easily oxidized to produce acidic (H2S, H2SO4, etc.) and reductant groundwater with organic materials that percolated downward, resulting in enrichment of Al in underlying bauxite; it also reduced Fe3+ to its easily migrating form Fe2+, moving downward to near the basal carbonate culminated in precipitating of ferruginous (FeS2, FeCO3, etc.) strata of the “coal–bauxite–iron” structure. Thus, the bauxitic materials experienced Al enrichment and Si and Fe removal under above certain hydrogeological conditions forming the high-quality bauxite.  相似文献   

19.
The Liushanyan deposit is an important volcanic‐host massive sulfide (VMS) Cu–Zn deposit in the Qinling‐Tongbai‐Dabie orogenic belt, central China, with reserve of 2.38 Mt Cu and 16.11 Mt Zn. Orebodies occur in the meta‐quartz keratophyre of the Liushanyan formation. In this paper, we present textural features and laser ablation ICP‐MS U–Pb dating results of zircons from the ore‐bearing mylonitized meta‐quartz keratophyre. The hydrothermal zircons are distinct from metamorphic zircons in this rock, showing low cathodoluminescence (CL) response and hydrothermal rims (black in CL images). They have relatively flat light rare earth element patterns and high La content and low (Sm/La)N and Ce/Ce* values. These features are typical of hydrothermal zircons. The cores of metamorphic zircons yield a weighted mean 206Pb/238U age of 900 ± 26 Ma, interpreted as the volcanic and related VMS mineralizing age. Two much younger events are also recorded by zircons in this rock: (i) the Early Silurian amphibolites–greenschist facies metamorphism at 435 ± 26 Ma; and (ii) the growth of hydrothermal zircons at ca. 241 ± 1 Ma, associated with the ductile shear deformation. The Silurian metamorphic event is probably associated with the arc–continent collision, while the Triassic ductile deformation event formed in the final continent–continent collision setting.  相似文献   

20.
Porcelain wares have been produced following the directions contained in the Heylyn and Frye patent of 1744, using Cherokee clay and a lime‐alkali glass frit. The wares were fired to the bisque (˜ 950°C), glazed using a clay‐glass mixture, and then fired to a “heat‐work” level of Orton cone 9–90° deflection at 150°C per hour (1279°C). Modal mineralogy comprises Caplagioclase and two glass phases, one relict frit and the other a melt phase. The bulk chemistry of the body comprises 64.3 wt % SiO2, 21.7 wt % Al2O3, and 5.6 wt % CaO. Molecular ratios are SiO2:Al2O3 5.0 and SiO2:CaO 10.7. It is concluded that the patent, whose significance has been questioned over many years, was a practical working recipe, that close comparison may be made with porcelains of the “A”‐marked group, and that the patent represents a remarkable landmark in English ceramic history. © 2004 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号