首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present combined observations made near midnight by the EISCAT radar, all-sky cameras and the combined released and radiation efects satellite (CRRES) shortly before and during a substorm. In particular, we study a discrete, equatorward-drifting auroral arc, seen several degrees poleward of the onset region. The arc passes through the field-aligned beam of the EISCAT radar and is seen to be associated with a considerable upflow of ionospheric plasma. During the substorm, the CRRES satellite observed two major injections, 17 min apart, the second of which was dominated by O+ ions. We show that the observed are was in a suitable location in both latitude and MLT to have fed O+ ions into the second injection and that the upward flux of ions associated with it was sufficient to explain the observed injection. We interpret these data as showing that arcs in the nightside plasma-sheet boundary layer could be the source of O+ ions energised by a dipolarisation of the mid- and near-Earth tail, as opposed to ions ejected from the dayside ionosphere in the cleft ion fountain.  相似文献   

2.
We have combined ∼300 h of tristatic measurements of the field-perpendicular F region ionospheric flow measured overhead at Tromsø by the EISCAT UHF radar, with simultaneous IMP-8 measurements of the solar wind and interplanetary magnetic field (IMF) upstream of the Earth’s magnetosphere, in order to examine the response time of the ionospheric flow to changes in the north-south component of the IMF (Bz). In calculating the flow response delay, the time taken by field changes observed by the spacecraft to first effect the ionosphere has been carefully estimated and subtracted from the response time. Two analysis methods have been employed. In the first, the flow data were divided into 2 h-intervals of magnetic local time (MLT) and cross-correlated with the “half-wave rectifier” function V2Bs, where V is the solar wind speed, and Bs is equal to IMF Bz if the latter is negative, and is zero otherwise. Response delays, determined from the time lag of the peak value of the cross-correlation coefficient, were computed versus MLT for both the east-west and north-south components of flow. The combined data set suggests minimum delays at ∼1400 MLT, with increased response times on the nightside. For the 12-h sector centred on 1400 MLT, the weighted average response delay was found to be 1.3 ± 0.8 min, while for the 12-h sector centred on 0200 MLT the weighted average delay was found to increase to 8.8 ± 1.7 min. In the second method we first inspected the IMF data for sharp and enduring (at least ∼5 min) changes in polarity of the north-south component, and then examined concurrent EISCAT flow data to determine the onset time of the corresponding enhancement or decay of the flow. For the case in which the flow response was timed from whichever of the flow components responded first, minimum response delays were again found at ∼1400 MLT, with average delays of 4.8 ± 0.5 min for the 12-h sector centred on 1400 MLT, increasing to 9.2 ± 0.8 min on the nightside. The response delay is thus found to be reasonably small at all local times, but typically ∼6 min longer on the nightside compared with the dayside. In order to make an estimate of the ionospheric information propagation speed implied by these results, we have fitted a simple theoretical curve to the delay data which assumes that information concerning the excitation and decay of flow propagates with constant speed away from some point on the equatorward edge of the dayside open-closed field line boundary, taken to lie at 77° magnetic latitude. For the combined cross-correlation results the best-fit epicentre of information propagation was found to be at 1400 MLT, with an information propagation phase speed of 9.0 km s−1. For the combined event analysis, the best-fit epicentre was also found to be located at 1400 MLT, with a phase speed of 6.8 km s−1.  相似文献   

3.
本文基于2005年1月和7月DMSP F13卫星的观测数据, 研究了日侧伴随电子加速的顶部电离层离子整体上行事件的分布特征.结果表明, 离子上行主要发生在磁纬70°~80° MLAT范围内, 加速电子磁层源区对应低纬边界层和等离子体片边界层; 冬季上行存在明显的"晨昏不对称性", 主要发生在晨侧(06∶00—09∶00 MLT), 夏季上行主要发生在磁正午(09∶00—15∶00 MLT), 以磁正午为中心近似呈对称分布, 并且冬季离子上行发生率显著高于夏季; 离子上行发生率在中等地磁活动时期显著增强, 上行区域随着地磁活动的增强向低纬度方向扩展; 行星际磁场Bx>0时, 对应等离子体片边界层13∶00—18∶00 MLT和06∶00—09∶00 MLT区域内上行发生率增加, 行星际磁场By的方向会导致上行高发区以磁正午为中心发生反转, 行星际磁场南向时, 上行发生率增强; 冬季离子上行平均速度高于夏季.  相似文献   

4.
The presence of polar patches as observed simultaneously in the same magnetic meridian of opposite nightside ionospheres by coherent and incoherent scatter radars are described. The patches appear to be related to variations either in the Bz or By component of the interplanetary magnetic field which cause transient merging on the dayside magnetopause. The passage and characteristics of polar patches as they traverse the polar cap into the nightside auroral oval are not significantly affected by the occurrence of small substroms. This study illustrates how the observations of polar patches in the nightside high-latitude ionosphere could be of great value in determining their formation process.  相似文献   

5.
We report on the response of high-latitude ionospheric convection during the magnetic storm of March 20–21 1990. IMP-8 measurements of solar wind plasma and interplanetary magnetic field (IMF), ionospheric convection flow measurements from the Wick and Goose Bay coherent radars, EISCAT, Millstone Hill and Sondrestrom incoherent radars and three digisondes at Millstone Hill, Goose Bay and Qaanaaq are presented. Two intervals of particular interest have been identified. The first starts with a storm sudden commencement at 2243 UT on March 20 and includes the ionospheric activity in the following 7 h. The response time of the ionospheric convection to the southward turning of the IMF in the dusk to midnight local times is found to be approximately half that measured in a similar study at comparable local times during more normal solar wind conditions. Furthermore, this response time is the same as those previously measured on the dayside. An investigation of the expansion of the polar cap during a substorm growth phase based on Faraday’s law suggests that the expansion of the polar cap was nonuniform. A subsequent reconfiguration of the nightside convection pattern was also observed, although it was not possible to distinguish between effects due to possible changes in By and effects due to substorm activity. The second interval, 1200–2100 UT 21 March 1990, included a southward turning of the IMF which resulted in the Bz component becoming -10 nT. The response time on the dayside to this change in the IMF at the magnetopause was approximately 15 min to 30 min which is a factor of \sim2 greater than those previously measured at higher latitudes. A movement of the nightside flow reversal, possibly driven by current systems associated with the substorm expansion phases, was observed, implying that the nightside convection pattern can be dominated by substorm activity.  相似文献   

6.
A high-frequency transmitter located at Clyde River, NWT, Canada, and a receiver located near Boston, USA, provide a 3200 km trans-auroral, near-meridional propagation path over which the propagation characteristics have been measured. Out of the fourteen frequencies in the HF band sampled every hour for the duration of the experimental campaign (16 January-8 February 1989), the signal level measurements of 6.800 MHz transmissions were selected in order to determine the extent and occurrence of auroral absorption. The median level of auroral absorption along the path is found to increase with geomagnetic activity, quantified by the index Kp, with the increase being greater in the post-midnight sector than in the pre-midnight sector. This asymmetric behaviour is attributed to the precipitation of high energy electrons into the midnight and morning sector auroral D region. The measured diurnal variation in the median level of absorption is consistent with previous models describing the extent and magnitude of auroral absorption and electron precipitation. Individual substorms, identified from geosynchronous satellite data, are found to cause short-lived absorption events in the HF signal level of \sim30 dB at 6.800 MHz. The occurrence of substorm correlated auroral absorption events is confined to the midnight and morning sectors, consistent with the location of the electron precipitation. The magnitude of absorption is related to the magnetotail stress during the substorm growth phase and the magnetotail relaxation during the substorm expansion phase onset. The absorption magnitude and the occurrence of substorms during the period of the campaign increase at times of high Kp, leading to an increase in median auroral absorption during disturbed periods.  相似文献   

7.
We have analysed a database of 300 h of tristatic ionospheric velocity measurements obtained overhead at Tromsø (66.3° magnetic latitude) by the EISCAT UHF radar system, for the presence of flow effects associated with the y-component of the IMF. Since it is already known that the flow depends upon IMF Bz, a least-squares multivariate analysis has been used to determine the flow dependence on both IMF By and Bz simultaneously. It is found that significant flow variations with IMF By occur, predominantly in the midnight sector (2100/0300 MLT), but also pre-dusk (1600/1700 MLT), which are directed eastward for IMF By positive and westward for IMF By negative. The flows are of magnitude 20/30 m s–1 nT–1 in the midnight sector, and smaller, 10/20 m s–1 nT–1, pre-dusk, and are thus associated with significant changes of flow of order a few hundred m s–1 over the usual range of IMF By of about ±5 nT. At other local times the IMF By-related perturbation flows are much smaller, less than 5 m s–1 nT–1, and consistent with zero within the uncertainty estimates. We have investigated whether these IMF By-dependent flows can be accounted for quantitatively by a theoretical model in which the equatorial flow in the inner magnetosphere is independent of IMF By, but where distortions of the magnetospheric magnetic field associated with a penetrating component of the IMF By field changes the mapping of the field to the ionosphere, and hence the ionospheric flow. We find that the principal flow perturbation produced by this effect is an east-west flow whose sense is determined by the north-south component of the unperturbed flow. Perturbations in the north-south flow are typically smaller by more than an order of magnitude, and generally negligible in terms of observations. Using equatorial flows which are determined from EISCAT data for zero IMF By, to which the corotation flow has been added, the theory predicts the presence of zonal perturbation flows which are generally directed eastward in the Northern Hemisphere for IMF By positive and westward for IMF By negative at all local times. However, although the day and night effects are therefore similar in principle, the model perturbation flows are much larger on the nightside than on the dayside, as observed, due to the day-night asymmetry in the unperturbed magnetospheric magnetic field. Overall, the model results are found to account well for the observed IMF By-related flow perturbations in the midnight sector, in terms of the sense and direction of the flow, the local time of their occurrence, as well as the magnitude of the flows (provided the magnetic model employed is not too distorted from dipolar form). At other local times the model predicts much smaller IMF By-related flow perturbations, and thus does not account for the effects observed in the pre-dusk sector.  相似文献   

8.
Data from Equator-S and Geotail are used to study the dynamics of the plasma sheet observed during a substorm with multiple intensifications on 25 April 1998, when both spacecraft were located in the early morning sector (03–04 MLT) at a radial distance of 10–11 RE. In association with the onset of a poleward expansion of the aurora and the westward electrojet in the premidnight and midnight sector, both satellites in the morning sector observed plasma sheet thinning and changes toward a more tail-like field configuration. During the subsequent poleward expansion in a wider local time sector (20−04 MLT), on the other hand, the magnetic field configuration at both satellites changed into a more dipolar configuration and both satellites encountered again the hot plasma sheet. High-speed plasma flows with velocities of up to 600 km/s and lasting 2–5 min were observed in the plasma sheet and near its boundary during this plasma sheet expansion. These high-speed flows included significant dawn-dusk flows and had a shear structure. They may have been produced by an induced electric field at the local dipolarization region and/or by an enhanced pressure gradient associated with the injection in the midnight plasma sheet.  相似文献   

9.
Measurements with a HF Doppler sounder at Kodaikanal (10.2°N, 77.5°E, geomagnetic latitude 0.8°N) showed conspicuous quasi-periodic fluctuations (period 25/35 min) in F region vertical plasma drift, Vz in the interval 0047/0210 IST on the night of 23/24 December, 1991 (Ap = 14, Kp < 4). The fluctuations in F region vertical drift are found to be coherent with variations in Bz (north-south) component of interplanetary magnetic field (IMF), in geomagnetic H/X components at high-mid latitude locations both in the sunlit and dark hemispheres and near the dayside dip equator, suggestive of DP2 origin. But the polarity of the electric field fluctuations at the midnight dip equator (eastward) is the same as the dayside equator inferred from magnetic variations, contrary to what is expected of equatorial DP2. The origin of the coherent occurrence of equatorial electric field fluctuations in the DP2 range of the same sign in the day and night hemispheres is unclear and merits further investigations.  相似文献   

10.

基于Van Allen Probes近三年的EMFISIS仪器波动观测数据,对内磁层下频带哨声模合声波幅度的全球分布特性对地磁活动水平的依赖性进行了详细的统计分析,着重研究下频带合声波平均场强幅度随磁壳值L、磁地方时、地磁纬度的分布特征及不同强度区间的合声波的发生概率.结果表明,下频带合声波的波动强度与地磁活动密切正相关,处于强磁扰期间的合声波具有更大的振幅,其发生率与地磁活动强度具有同样的正相关特性.下频带合声波主要发生于午夜至下午的磁地方时区间,其余的磁地方时时段下频带合声波较弱.赤道面附近的下频带合声波主要分布在夜侧至黎明这一时段内,随着磁纬度的增加逐步向日侧扩展.下频带合声波在午夜侧(21-03 MLT)主要出现在15°的磁纬范围内,在晨侧(03-09 MLT)可以到达15°磁纬甚至更高纬度.下频带合声波主要发生于L=~4.5的附近区域.随着地磁活动的增加,下频带合声波所覆盖的L-shell空间区域增大,趋势为向高、低L值区域同时扩展.建立的下频带哨声合声波的全球分布模型将有助于进一步深入理解该重要磁层波动对辐射带电子的波粒作用散射效应和对辐射带动力学过程的定量贡献.

  相似文献   

11.
On 7 December 1992, a moderate substorm was observed by a variety of satellites and ground-based instruments. Ionospheric flows were monitored near dusk by the Goose Bay HF radar and near midnight by the EISCAT radar. The observed flows are compared here with magnetometer observations by the IMAGE array in Scandinavia and the two Greenland chains, the auroral distribution observed by Freja and the substorm cycle observations by the SABRE radar, the SAMNET magnetometer array and LANL geosynchronous satellites. Data from Galileo Earth-encounter II are used to estimate the IMF Bz component. The data presented show that the substorm onset electrojet at midnight was confined to closed field lines equatorward of the pre-existing convection reversal boundaries observed in the dusk and midnight regions. No evidence of substantial closure of open flux was detected following this substorm onset. Indeed the convection reversal boundary on the duskside continued to expand equatorward after onset due to the continued presence of strong southward IMF, such that growth and expansion phase features were simultaneously present. Clear indications of closure of open flux were not observed until a subsequent substorm intensification 25 min after the initial onset. After this time, the substorm auroral bulge in the nightside hours propagated well poleward of the pre-existing convection reversal boundary, and strong flow perturbations were observed by the Goose Bay radar, indicative of flows driven by reconnection in the tail.  相似文献   

12.
The analysis of simultaneous observations of 128 cases of high-latitude magnetic impulse events (MIEs), as well as geomagnetic pulsations in the Pc1–2 band observed in the area of the dayside cusp, was carried out. We investigated magnetograms from the Mirny Observatory, Antarctica. As a result of the examination, three groups of impulses were identified: (1) impulses accompanied by impulsive bursts of intervals of pulsations with rising periods (IPRPs)-type geomagnetic pulsations—16% of all events, (2) impulses accompanied by impulsive bursts of the Pi1B type (bursts of irregular magnetic pulsations)—48% of all events, and (3) impulses which were not accompanied by geomagnetic pulsations within a high-frequency band—36% of all events.It was found that the maximum frequency of occurrence of the impulses accompanied by impulsive bursts of the IPRP and Pi1B types was observed between 1200 and 1300 MLT. The events of the first two groups were observed predominantly when Bz>0. It was shown that the filling frequency of impulsive bursts that accompany the occurrence of impulses depends on the amplitude of the bursts. The maximum frequency of the occurrence of impulses which were not accompanied by impulsive bursts is between 1000 and 1100 MLT. The events of the third group were observed predominantly when Bz<0. In most cases, the occurrence of impulsive bursts coincided with the leading edge of the MIE.It is supposed that the MIE generation is stimulated by intensification of the plasma turbulence level at the dayside magnetopause in consequence of modulation instability development or reconnection processes.  相似文献   

13.
We investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF) had predominantly a positive Bz component (northward IMF) but varying By. Polar UVI observations of the Northern Hemisphere auroral emission indicate the existence of a region of luminosity near local noon at latitudes poleward of the dayside auroral oval, which we interpret as the ionospheric footprint of a high-latitude reconnection site. The large field-of-view afforded by the satellite-borne imager allows an unprecedented determination of the dynamics of this region, which has not previously been possible with ground-based observations. The location of the emission in latitude and magnetic local time varies in response to changes in the orientation of the IMF; the cusp MLT and the IMF By component are especially well correlated, the emission being located in the pre- or post-noon sectors for By < 0 nT or By > 0 nT, respectively. Simultaneous ground-based observations of the ionospheric plasma drift are provided by the CUTLASS Finland HF coherent radar. For an interval of IMF By 0 nT, these convection flow measurements suggest the presence of a clockwise-rotating lobe cell contained within the pre-noon dayside polar cap, with a flow reversal closely co-located with the high-latitude luminosity region. This pattern is largely consistent with recent theoretical predictions of the convection flow during northward IMF. We believe that this represents the first direct measurement of the convection flow at the imaged location of the footprint of the high-latitude reconnection site.  相似文献   

14.
Three SuperDARN coherent HF radars are employed to investigate the excitation of convection in the dayside high-latitude ionosphere in response to transient reconnection occurring in the cusp region. This study demonstrates the existence of transient antisunward-propagating backscatter features at the expected location of the ionospheric footprint of the cusp region, which have a repetition rate near 10 min. These are interpreted as the ionospheric signature of flux transfer events. Moreover, transient sunward-propagating regions of backscatter are observed in the convection return flow regions of both the pre- and post-noon sectors. These patches are observed to propagate towards the noon sector from at least as far around the auroral zone as 07 MLT in the pre-noon sector and 17 MLT in the post-noon sector, travelling with a veloCity of approximately 1.5 to 2 km s−1. These return flow patches have a repetition rate similar to that of the transient features observed at local noon. While providing supporting evidence for the impulsive nature of convection flow, the observation of sunward-propagating features in the return flow region is not consistent with current conceptual models of the excitation of convection.  相似文献   

15.
The occurrence frequencies of dayside ion conics with various conic angles are obtained as a function of altitude from Exos-D (Akebono) observations. We made a model calculation of ion conic evolution to match the observation results. The observed occurrence frequencies of ion conics with 80° to 90° conic angle are used as an input to the model and the occurrence frequencies of ion conics with smaller conic angles are numerically calculated at higher altitudes. The calculated occurrence frequencies are compared with the observed ones of ion conics with smaller conic angles. We take into account conic angle variation with altitude in both adiabatic and non-adiabatic cases, horizontal extension of ion conics due to E × B drift, and evolution to elevated conics and ion beams in the model. In the adiabatic case, the conic angle decreases with increasing altitude much faster than was observed. The occurrence frequency of small-angle conics is much larger than the observed value without E × B drift and evolution to the other UFIs. An agreement is obtained by assuming non-adiabatic variation of conic angles with altitude and an ion E × B drift to gyro velocity ratio of 0.08 to 0.6, depending on geomagnetic activities.  相似文献   

16.
WIND observations of coherent electrostatic waves in the solar wind   总被引:4,自引:0,他引:4  
The time domain sampler (TDS) experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s.) waves: coherent wave packets of Langmuir waves with frequencies ffpe, coherent wave packets with frequencies in the ion acoustic range fpiffpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF) ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES) and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ≃25D, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations). The type (wave packet or IES) of the observed LF waves is mainly determined by the proton temperature and by the direction of the magnetic field, which themselves depend on the latitude of WIND with respect to the heliospheric current sheet.  相似文献   

17.
A statistical analysis of F-region and topside auroral ion upflow events is presented. The study is based on observations from EISCAT Common Programmes (CP) 1 and 2 made between 1984 and 1996, and Common Programme 7 observations taken between 1990 and 1995. The occurrence frequency of ion upflow events (IUEs) is examined over the altitude range 200 to 500 km, using field-aligned observations from CP-1 and CP-2. The study is extended in altitude with vertical measurements from CP-7. Ion upflow events were identified by consideration of both velocity and flux, with threshold values of 100 m s–1 and 1013 m–2 s–1, respectively. The frequency of occurrence of IUEs is seen to increase with increasing altitude. Further analysis of the field-aligned observations reveals that the number and nature of ion upflow events vary diurnally and with season and solar activity. In particular, the diurnal distribution of upflows is strongly dependent on solar cycle. Furthermore, events identified by the velocity selection criterion dominate at solar minimum, whilst events identified by the upward field-aligned flux criterion dominated at solar maximum. The study also provides a quantitative estimate of the proportion of upflows that are associated with enhanced plasma temperature. Between 50 and 60% of upflows are simultaneous with enhanced ion temperature, and approximately 80% of events are associated with either increased F-region ion or electron temperatures.  相似文献   

18.

基于Van Allen Probes近三年的EMFISIS仪器波动观测数据,针对内磁层上频带哨声模合声波幅度的全球分布特性对地磁活动水平的依赖性进行了详细的统计分析,着重研究上频带合声波平均场强幅度随磁壳值(L)、磁地方时(MLT)、地磁纬度(MLAT)的分布特征及不同强度区间的合声波的发生概率.结果表明,上频带合声波的平均场强幅度与地磁活动条件密切相关,在强磁扰期,平均幅度可达到40 pT以上.在外辐射带中心区域(L=4~6),上频带合声波的幅度最强;在L<~3的区域,上频带磁层合声波没有分布.在夜侧至晨侧(22-09MLT),上频带合声波幅度最强;在下午侧至昏侧(15-19MLT),上频带合声波幅度最弱;日侧(10-14MLT)上频带合声波在不同地磁活动条件下都存在,幅度偏小.上频带合声波主要分布在|MLAT| < 10°,其中21-09MLT范围内、磁纬位于|MLAT| < 5°的平均场强幅度最强,磁扰期间可达约100 pT.另外,统计而言,中等幅度(10~30 pT)的上频带合声波在夜侧至晨侧(23-09MLT)靠近磁赤道区域的发生率最高,可达15%左右.强幅度(>30 pT)的上频带合声波普遍分布在夜侧(01-05MLT),发生率最小.本文建立的上频带哨声模合声波的全球分布模型结合已经建立的下频带合声波的全球分布模型,将有助于进一步深入理解该重要磁层等离子体波动对地球等离子体片、辐射带、环电流动力学过程的定量贡献.

  相似文献   

19.
DEMETER卫星观测的LF/MF电场频谱特征初步研究   总被引:3,自引:0,他引:3       下载免费PDF全文
朱涛 《地震学报》2010,32(4):476-489
利用法国DEMETER卫星观测的电场数据,研究了中国及邻区(0deg;——60deg;N,60deg;E——140deg;E),频段为10KHz——3MHz,时间段为2008年1月1日——2008年9月12日期间的平均功率谱密度特征.文中选择了犓狆指数的日平均值小于或等于4的数据,获得LF频段(10——20 MHz)和MF频段(20 KHz——3 MHz)以16天为周期的昼侧和夜侧的平均功率谱密度空间分布图,得到了以下初步结果.LF频段:① 昼侧,不同频率的谱在对应时段上形态相似度不高,主要呈现纬度分带特征.夜侧,不同频率的谱在对应时段上形态相似度较高,主要差异在于谱的幅度,同一频率不同时段的谱分带特征不明显;② 昼侧谱的幅度值跨度要比夜侧的小很多,前者一般为1——1.5个数量级,而后者一般在2个以上,甚至达到4个数量级;③ 在汶川地震前后,平均功率谱密度在成都——兰州一线存在明显的变化.MF 频段:① 昼侧,不同频率对应时段的谱形态没有明显的相似性,同一频率不同时段的谱形态可能具有较好、弱或不具有相似性,具有明显、弱或不具纬度分带特征.夜侧,某些频段对应时段的谱形态具有明显的相似性,同一频率不同时段或者分时期的不同时段的谱形态具有较好的相似性,不具有明显的纬度分带特征,具有弱分区或者弱经度分带特征;② 昼侧和夜侧的谱幅度变化都不大,基本都在0.5个数量级之内;③ 在汶川地震前后没有发现明显的平均功率谱密度变化.  相似文献   

20.
Measurements with the ion charge-energy-mass spectrometer CHEM on the AMPTE/CCE spacecraft were used to investigate the origin of energetic He+ and He++ ions observed in the equatorial plane at 3\leqL\leq9. Special emphasis was laid on the dependence of long-term average distributions on magnetic local time (MLT) and the geomagnetic activity index Kp. The observations are described in terms of the phase space densities f1 (for He+) and f2 (for He++). They confirm preliminary results from a previous study: f1 is independent of MLT, whereas f2 is much larger on the nightside than on the dayside. They show, furthermore, that f1 increases slightly with Kp on intermediate drift shells, but decreases on high drift shells (L\geq7). f2 increases with Kp on all drift shells outside the premidnight sector. Within this sector a decrease is observed on high drift shells. A simple ion tracing code was developed to determine how and from where the ions move into the region of observations. It provides ion trajectories as a function of the ion charge, the magnetic moment and Kp. The ion tracing enables a distinction between regions of closed drift orbits (ring current) and open convection trajectories (plasma sheet). It also indicates how the outer part of the observation region is connected to different parts of the more distant plasma sheet. Observations and tracing show that He++ ions are effectively transported from the plasma sheet on convection trajectories. Their distribution in the observation region corresponds to the distribution of solar wind ions in the plasma sheet. Thus, energetic He++ ions most likely originate in the solar wind. On the other hand, the plasma sheet is not an important source of energetic He+ ions. Convection trajectories more likely constitute a sink for He+ ions, which may diffuse onto them from closed drift orbits and then get lost through the magnetopause. An ionospheric origin of energetic He+ ions is unlikely as well, since the source mechanism should be almost independent of Kp. There is considerable doubt, however, that a plausible mechanism also exists during quiet periods that can accelerate ions to ring current energies, while extracting them from the ionosphere. It is concluded, therefore, that energetic He+ ions are mainly produced by charge exchange processes from He++ ions. This means that most of the energetic He+ ions constituting the average distributions also very likely originate in the solar wind. Additional ionospheric contributions are possible during disturbed periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号