首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.

陕西洛南河口遗址是目前我国发现最早开采绿松石的古矿遗址,它的发现为研究中国早期绿松石的来源提供了重要的信息。为探索河口古矿出产绿松石的去向,本文结合秦岭东部的其他现代绿松石产地矿样,利用铅和锶同位素比值法,试图初步建立我国中原地区绿松石产地的判别模型。主要实验结果如下:利用TIMS技术对秦岭东部陕西白河、湖北郧县、湖北竹山、陕西洛南、河南淅川这5个产地的绿松石矿石样品中的铅、锶同位素进行了检测,从而为分析和探索这5个产地绿松石各自的地球化学特征提供数据。实验发现来自同一产地样品的铅、锶同位素比值具有较好的一致性。绿松石的铅同位素比率(207Pb/208Pb)可以以比率值0.410为界分为2组。绿松石的锶同位素比率(87Sr/86Sr)可以按比率值0.7105、0.7145为界划分为3组。结合铅、锶同位素比值和锶含量数据,可以初步区分不同产地的绿松石原料。通过应用该模型测试二里头遗址出土绿松石文物的原料产地,结果表明,洛南河口古代绿松石采矿遗址应是二里头绿松石的原料产地之一。

  相似文献   

2.
哈毕力格铀矿床位于华北陆块北缘中段,主要受乌兰哈达—猴儿山背斜和区内断裂控制。铀矿化主要产于新太古界乌拉山群第二岩段石英岩中,一直被认为是变质成因铀矿床。在分析该矿床成矿地质背景和矿化特征的基础上,系统研究了矿石与围岩中黄铁矿的硫、铅同位素特征。数据表明,硫同位素组成变化于-4.7‰~12.9‰之间,暗示成矿流体主要来自岩浆热液,同时遭受了地层物质的混染。铅同位素组成(208Pb/204Pb=36.147~42.968,207Pb/204Pb=15.919~34.268,206Pb/204Pb=19.488~168.032)远高于单阶段演化模式组成,不同样品的207Pb/204Pb-206Pb/204Pb线性关系良好,为典型的二阶段铅同位素演化体系,表明变质地层为成矿作用提供了铀源。通过放射性207Pb/206Pb计算,结合区...  相似文献   

3.
花岗岩可以有效示踪大陆基底物质,并区分具有不同地壳结构和演化历史的构造块体。洪镇花岗岩位于长江中下游地区江北A型花岗岩带的西延位置,距离郯庐断裂带约30 km。锆石SIMS定年表明,安庆怀宁县洪镇花岗岩形成于126.2±2.0 Ma,与长江中下游A型花岗岩以及大别造山带I型花岗岩的形成时代一致。洪镇花岗岩高硅、富钾,属于高钾钙碱性系列I型花岗岩。其富集轻稀土元素和大离子亲石元素,相对亏损中稀土元素和高场强元素,经历了角闪石为主的结晶分异。洪镇花岗岩具有较为富集的Sr—Nd—Hf同位素,和低放射性成因Pb同位素组成,其n(87Sr)/n(86Sr)(t)为0.7065~0.7066,εNd(t)值为-10.9~-12.0,锆石εHf(t)为-6.7~-13.2,n(206Pb)/n(204Pb)(t)、n(207Pb)/n(204Pb)(t)和n(208Pb)/n(204...  相似文献   

4.
西藏北部舍索与拉屋铜矿床硫化物铅同位素特征   总被引:1,自引:0,他引:1       下载免费PDF全文
本文在系统的野外地质工作基础上,对舍索与拉屋矿床的矿石硫化物铅同位素组成进行综合分析,进而示踪其成矿物质来源。结果显示,舍索矿区矿石硫化物铅的206Pb/204Pb值为18.517~18.776,207Pb/204Pb值为15.671~15.756,208Pb/204Pb值为38.955~39.33;拉屋矿区矿石硫化物铅的206Pb/204Pb值为18.651~18.757,207Pb/204Pb值为15.707~15.823,208Pb/204Pb值为39.183~39.561。研究表明,舍索与拉屋矿床矿石硫化物铅同位素含量比值具有明显的上地壳特征,指示两个矿床成矿物质主要来自上地壳。其中舍索矿床成矿物质富集受燕山期岩浆作用影响,而拉屋矿床部分成矿物质由晚石炭纪地幔物质的喷流沉积作用提供。  相似文献   

5.
为限定鲁西莱芜地区典型矽卡岩矿床成矿岩体的岩浆源区及岩石成因,对矿山岩浆杂岩体开展了锆石U-Pb年代学、全岩地球化学、全岩Sr-Nd-Pb及锆石Hf同位素研究。结果显示,该岩体形成于早白垩世(131±1~129±1 Ma),具高镁埃达克质岩石特征,富集LREE和LILEs(Rb、Ba、K、Sr),亏损HREE和HFSEs(Nb、Ta、Ti、P),Eu负异常不明显或有弱的正异常。岩石具有较高的(87Sr/86Sr)i比值(0.706 728~0.707 867)和较低的εNd(t)值(-17.67~-13.84)、εHf(t)值(-19.1~-12.2);(206Pb/204Pb)i为16.833~16.955、(207Pb/204Pb)i为15.339~15.346和(208Pb/204Pb)i...  相似文献   

6.
松辽盆地徐家围子断陷营城组火山岩中含有粗面质岩石,是深层天然气重要储层之一。岩心、钻井及地震资料研究表明,粗面岩具有高位喷发、低位充填的特征,在火山口附近厚度大,远离火山口厚度小。粗面岩主量、微量及同位素地球化学显示其属于钾玄岩系列,富集稀土元素,强不相容元素Rb、Ba、Th、U质量分数较高。粗面岩的(87Sr/86Sr)i=0.704 321~0.705 395,εNd(t)为正值(3.36 ~ 3.83),Pb同位素比值相对集中,(206Pb/204Pb)i、(207Pb/204Pb)i、(208Pb/204Pb)i平均值分别为18.43、15.51和38.23。研究表明,粗面质岩浆由区域年轻地壳组分部分熔融形成,经历了一定程度的分离结晶作用,地壳混染作用不显著。粗面质岩浆多期次喷发后形成粗面岩,热液气体不断聚集发生隐蔽爆破形成角砾,未固结的角砾被岩浆期后热液“胶结”,形成隐爆角砾岩,构成了粗面质岩石重要的储层类型。  相似文献   

7.
龙山Au-Sb矿床是湘中Au、Sb矿集区的代表性矿床,本文对其不同类型矿石、矿区围岩和区域地层进行了S、Pb、Sr同位素组成对比研究。矿石中硫化物的δ34S值为-3.0‰~5.1‰,平均值2.3‰;矿区围岩的δ34S值为4.0‰~5.9‰,平均值5.2‰;区域地层的δ34S值为9.3‰~13.3‰,平均值11.3‰。矿石与矿区围岩、区域地层的硫同位素组成差别较大,矿石硫具岩浆来源特征。矿石中硫化物的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为16.992~18.457、15.392~15.722和37.586~38.960,矿区围岩的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为17.630~...  相似文献   

8.
吴亚东  杨进辉  朱昱升 《岩石学报》2023,39(9):2583-2597

本文对中国东部中新世四子王旗玄武岩开展了详细的全岩和橄榄石主、微量元素及全岩Sr-Nd-Pb-Hf-Mg同位素研究, 据此探讨它们的成因及源区性质。研究发现, 四子王旗玄武岩具有类似于高μ(HIMU)型地幔起源熔体的微量元素分布特征, Zr、Hf、Ti的负异常, 高的Zr/Hf比值(Zr/Hf=49.3~54.8), 以及低于正常地幔范围的δ26Mg值(-0.51‰~-0.49‰), 表明其来源于碳酸盐化地幔源区。它们还具有低的Sc含量(10.1×10-6~10.5×10-6)和高的Gd/Yb比值(8.7~9.4), 结合它们橄榄石斑晶低的Fo值, 高的NiO含量和Fe/Mn比值, 揭示其母岩浆为碳酸盐化榴辉岩部分熔融产生。四子王旗玄武岩具有亏损的Sr-Nd-Hf同位素(87Sr/86Sr=0.70370~0.70449;εNd=+6.3~+6.4;εHf=+9.7~+10.3), 以及较低的Pb同位素组成(206Pb/204Pb=17.94, 207Pb/204Pb=15.44, 208Pb/204Pb=37.89), 指示它们源区为年轻的再循环洋壳物质, 很有可能来自于滞留的西太平洋板片。四子王旗玄武岩位于南北重力梯度带以西并远离海沟, 意味着滞留的西太平洋板片在物质上对上覆地幔的影响范围较之前认识的要更广。

  相似文献   

9.
内蒙古东乌旗阿尔哈达铅-锌-银矿床硫和铅同位素研究   总被引:5,自引:0,他引:5  
阿尔哈达铅-锌-银矿床是近年来在内蒙古东乌珠穆沁旗境内发现的一处大型铅-锌-银矿床,其产出环境和形成机理为国内外矿床学家所关注。对该矿床代表性岩(矿)石样品进行了硫和铅同位素分析,并对其变化规律和成因意义进行了讨论。研究结果表明,围岩和矿石中硫化物δ34S值变化范围为1.2‰~8.6‰,具有混源硫特征。根据共生硫化物对所确定的温度表明,该矿床的形成可划分为高温和中-低温两个阶段。17件矿石硫化物样品206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值变化范围分别为18.153~18.431,15.370~15.602和37.653~38.213,其平均值分别为18.271、15.464和37.873;3件围岩硫化物样品206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值变化范围分别为18.281~18.293,15.470~15.484和37.874~37.909,平均值分别为18.288、15.477和37.893。硫和铅同位素研究结果表明,阿尔哈达铅-锌-银矿床成矿物质分别来自泥盆系火山-沉积岩和印支期花岗岩。  相似文献   

10.
冯光英  刘飞  牛晓露  杨经绥 《地质学报》2022,96(8):2725-2742
南海北部边缘新生代玄武岩广泛分布,分布于海南岛北部的全新世早期石山组玄武岩,岩石组成为碱性橄榄玄武岩,其中可见较大颗粒的橄榄石斑晶,橄榄石斑晶具有较高的Fo值(82.8~83.5)和Ni含量(0.14%~0.20%)。橄榄玄武岩的微量元素及同位素组成与洋岛玄武岩(OIB)高度吻合,富集大离子亲石元素Rb、Ba和轻稀土元素,同时富集高场强元素Nb、Ta、Zr和Hf。矿物组成及主微量元素特征指示其源区为含石榴子石辉石岩源区,经历了较低程度的部分熔融(约5%)。此外,石山组橄榄玄武岩具有基本一致的Sr-Nd-Pb同位素组成,表明岩浆在上升过程中没有明显的地壳物质的混染,但是相比正常洋中脊玄武岩(MORB),石山组橄榄玄武岩具有较高的87Sr/86Sr比值,较低的εNd(t)值,以及较高的207Pb/204Pb(15.639~15.643)和208Pb/204Pb(38.977~38.996)比值,说明其源区为亏损地幔(DM)和富集地幔端元(...  相似文献   

11.
《Gondwana Research》2006,9(4):529-538
Sr, Nd and Pb isotopic compositions of the Cenozoic basalts were analyzed from Baengnyeongdo Island, Jeongok, Ganseong, and Jejudo Island of Korea. They reveal relatively enriched Sr and Nd isotopic compositions (87Sr/86Sr = 0.70330∼0.70555, 143Nd/144Nd = 0.51298∼0.51256) compared with MORB.207Pb/204Pb and 208Pb/204Pb values of all the analyzed Korean basalts lie above the Northern Hemisphere Reference Line (NHRL) defined by Hart (1984). Pb isotopic compositions of basalts from Jejudo Islands (206Pb/204Pb = 18.61∼19.12, 207Pb/204Pb = 15.54∼15.69, 208Pb/204Pb = 38.98∼39.72) are significantly more radiogenic than the rest (206Pb/204Pb = 17.72∼18.03, 207Pb/204Pb = 15.44∼15.58, 208Pb/204Pb = 37.77∼38.64). The Cenozoic Korean basalts thus can be divided into two groups based on their Sr, Nd and Pb isotopic compositions. The north group reveals mixing between DMM and EM1 while the south group displays DMM-EM2 mixing. Such a distribution is the same as Chinese Cenozoic basalts and it can be interpreted that the subcontinental lithospheric mantle under Korea represents simple lateral continuation of the South and North China Blocks. We suggest that Korean continental collision zone cross the Korean Peninsula through the region between the north and south basalt groups of Korea.  相似文献   

12.
The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs.  相似文献   

13.
We analyzed 17 fragments from a zoned allanite–epidote crystal (ca 2.2 mm × 4.0 mm), which had formed during different prograde and retrograde stages of ultra high pressure (UHP) and amphibolite facies metamorphism (240–230 Ma, Sulu Belt, E China), for the isotopic composition of Pb, Nd, and Sr and contents of Pb, U, and Th, Sr and Rb, and Nd and Sm. Since most fragments had 238U/204Pb and 232Th/204Pb values less than 1, corrections for in situ Pb growth are small and uncertainties in the recalculation of the Pb isotopic compositions to 240 Ma are insignificant. The recalculated Pb falls on a linear trend in the 206Pb/204Pb vs 207Pb/204Pb diagram with the allanite defining the low–206Pb/204Pb end (17.07) of this trend and the epidote defining its high–206Pb/204Pb end (17.56). The recalculated data scatter in the 206Pb/204Pb vs 208Pb/204Pb diagram, which implies that the initial Pb isotopic variation reflects the involvement of at least three different Pb sources. The low 87Rb/86Sr values account for a change in 87Sr/86Sr by in situ 87Sr growth of less than 0.0007, which implies that the isotopic heterogeneity of 87Sr/86Sr (0.70601–0.7200) is a primary feature. The Pb and Sr isotope data unequivocally demonstrate that contributions from different precursor minerals result in initial isotopic heterogeneity in the metamorphic reaction product. It is likely that such an initial isotopic heterogeneity also exists for Nd, but it could not be resolved in the present study. Initially heterogeneous Pb and Sr isotope compositions imply that age differences between core and rim of large crystals may result in the determination of highly arbitrary geological rates, especially for minerals with relatively low parent-to-daughter ratios.  相似文献   

14.
Seven hundred and twenty-five Sr, two hundred and forty-three Nd and one hundred and fifty-one Pb isotopic ratios from seven different Mexican magmatic provinces were compiled in an extensive geochemical database. Data were arranged according to the Mexican geological provinces, indicating for each province total number of analyses, range and mean of values and two times standard deviation (2σ). Data from seven provinces were included in the database: Mexican Volcanic Belt (MVB), Sierra Madre Occidental (SMO), Baja California (BC), Pacific Ocean (PacOc), Altiplano (AP), Sierra Madre del Sur (SMS), and Sierra Madre Oriental (SMOr). Isotopic values from upper mantle and lower crustal xenoliths, basement outcrops and sediments from the Cocos Plate were also compiled. In the MVB the isotopic ratios range as follows:87Sr/86Sr 0.703003-0.70841;143Nd/144Nd 0.512496-0.513098;206Pb/204Pb 18.567-19.580;207Pb/204Pb 15.466-15.647;208Pb/204Pb 38.065-38.632. The SMO shows a large variation in87Sr/86Sr ranging from ∼0.7033 to 0.71387.143Nd/144Nd ratios are relatively less variable with values from 0.51191 to 0.51286. Pb isotope ratios in the SMO are as follows:206Pb/204Pb 18.060-18.860;207Pb/204Pb 15.558-15.636;208Pb/204Pb 37.945-38.625. PacOc rocks show the most depleted Sr and Nd isotopic ratios (0.70232-0.70567 for Sr and 0.512631-0.513261 for Nd). Pb isotopes for PacOc show the following range:206Pb/204Pb 18.049-19.910;207Pb/2047Pb 15.425-15.734;208Pb/204Pb 37.449-39.404. The isotopic ratios of the AP rocks seem to be within the range of those from the PacOc. Most samples with reported Sr and Nd isotopic data are spread within and around the “mantle array”. The SMO seems to have been formed by a mixing process between mantle derived magmas and continental crust. The MVB appears to have a larger mantle component, with AFC as the dominant petrogenetic process for the evolved rocks. There is still a need for Pb isotopic data in all Mexican magmatic provinces and of Nd isotopes in BC, AP, SMS, and SMOr.  相似文献   

15.
西藏东部玉龙铜矿带,包括玉龙、扎拉尕、莽总、多霞松多和马拉松多含矿斑岩,马牧普钾质碱性斑岩和总郭碱性火山岩等Sr、Nd、Pb同位素组成比较一致,其数据点均分布在地幔演化区,接近EMI地幔端元,暗示其物质来源于交代地幔源区。  相似文献   

16.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

17.
The Rb-Sr and U-Pb systematics have been studied in the metasedimentary carbonate rocks from the Paleoproterozoic Kuetsjarvi Formation. Samples were taken from the borehole drilled in the northern zone of the Pechenga Greenstone Belt in the northwestern Kola Peninsula. The carbonate section of the formation is made up of three units (from the bottom to top): (I) dolomite (68 m), (II) calcareous-dolomite (9 m), and (III) clayey calcareous (1 m) ones. Dolomites (Mg/Ca = 0.55–0.61) from the lowermost unit I contain 70.3–111 ppm Sr. Initial 87Sr/86Sr ratio in them varies within 0.70560–0.70623 and characterizes the primary continental-lacustrine carbonate sediments. Calcareous dolomites (Mg/Ca = 0.39–0.59) and dolomitic limestones of units II and III (Mg/Ca = 0.02–0.36) are enriched in Sr (285–745 and 550–1750 ppm, respectively). Initial 87Sr/86Sr ratios in these rocks (0.70406–0.70486 and 0.70407–0.70431, respectively) fall within the range typical of the Jatulian seawater, which indicates that the carbonate sediments of two upper units were formed in an open marine basin. Study of dolomites from unit I showed that the Svecofennian metamorphism more significantly affected the U-Pb systems of carbonate rocks as compared to their Rb-Sr systems. In the 207Pb/204Pb-206Pb/204Pb diagram, most data points corresponding to the carbonate constituent of dolomites define isochron with an age of 1900 ± 25 Ma (MSWD = 0.5). The same samples define a positive correlation in the 208Pb/204Pb-206Pb/204Pb plot. Since sedimentary carbonates usually do not contain Th, this correlation points to secondary enrichment of the studied dolomites in Th or thorogenic 208Pb. Hence, the obtained Pb-Pb dating can be regarded as the age of the Svecofennian metamorphic event. Three samples from dolomites of unit I lack any disturbance of the initial U-Th-Pb systematics, but their trend in the 207Pb/204Pb-206Pb/204Pb diagram deviates from the 1900 Ma isochron. Based on these samples, the model U-Pb premetamorphic age of the Kuetsjarvi carbonate sediments is 2075–2100 Ma. This interval is consistent with the age range of the Lomagundi-Jatulian event, which was responsible for the formation of carbonate sediments with high positive δ13C values.  相似文献   

18.
High-K mafic alkalic lavas (5.4 to 3.2 wt% K2O) from Deep Springs Valley, California define good correlations of increasing incompatible element (e.g., Sr, Zr, Ba, LREE) and compatible element contents (e.g., Ni, Cr) with increasing MgO. Strontium and Nd isotope compositions are also correlated with MgO; 87Sr/86Sr ratios decrease and ɛNd values increase with decreasing MgO. The Sr and Nd isotope compositions of these lavas are extreme compared to most other continental and oceanic rocks; 87Sr/86Sr ratios range from 0.7121 to 0.7105 and ɛNd values range from −16.9 to −15.4. Lead isotope ratios are relatively constant, 206Pb/204Pb ∼17.2, 207Pb/204Pb ∼15.5, and 208Pb/204Pb ∼38.6. Depleted mantle model ages calculated using Sr and Nd isotopes imply that the reservoir these lavas were derived from has been distinct from the depleted mantle reservoir since the early Proterozoic. The Sr-Nd-Pb isotope variations of the Deep Springs Valley lavas are unique because they do not plot along either the EM I or EM II arrays. For example, most basalts that have low ɛNd values and unradiogenic 206Pb/204Pb ratios have relatively low 87Sr/86Sr ratios (the EM I array), whereas basalts with low ɛNd values and high 87Sr/86Sr ratios have radiogenic 206Pb/204Pb ratios (the EM II array). High-K lavas from Deep Springs Valley have EM II-like Sr and Nd isotope compositions, but EM I-like Pb isotope compositions. A simple method for producing the range of isotopic and major- and trace-element variations in the Deep Springs Valley lavas is by two-component mixing between this unusual K-rich mantle source and a more typical depleted mantle basalt. We favor passage of MORB-like magmas that partially fused and were contaminated by potassic magmas derived from melting high-K mantle veins that were stored in the lithospheric mantle. The origin of the anomalously high 87Sr/86Sr and 208Pb/204Pb ratios and low ɛNd values and 206Pb/204Pb ratios requires addition of an old component with high Rb/Sr and Th/Pb ratios but low Sm/Nd and U/Pb ratios into the mantle source region from which these basalts were derived. This old component may be sediments that were introduced into the mantle, either during Proterozoic subduction, or by foundering of Proterozoic age crust into the mantle at some time prior to eruption of the lavas. Received: 28 February 1997 / Accepted: 9 July 1998  相似文献   

19.
Epigenetic gold mineralization occurs in the Marmato mining district, within the Calima Terrain of the Setentrional Andes, Colombia. Regional rocks associated with this mineralization include: graphite- and chlorite-schists of the Arquia Complex; metamorphosed during the Cretaceous, Miocene sandstones, shales and conglomerates of the Amagá Formation; as well as pyroclastic rocks (clasts of basalt, andesites and mafic lavas) and subvolcanic andesitic/dacitic bodies of the Combia Formation (9 to 6 Ma). The subvolcanic Marmato stock hosts mesothermal and epithermal low-sulfidation Au–Ag ores in the form of distensional veins, stockwork, and quartz veinlets within brecciated zones. Ore minerals are pyrite, sphalerite and galena with subordinate chalcopyrite, arsenopyrite, pyrrhotite, argentite and native gold/electrum.Sericitized plagioclase from a porphyry dacite yielded a K–Ar age of 5.6 ± 0.6 Ma, interpreted as the age of ore deposition. This is in close agreement with the age of reactivation of the Cauca–Romeral Fault System (5.6 ± 0.4 Ma), which bounds the Calima Terrain. A porphyry andesite–dacite (6.7 ± 0.1 Ma), hosting the Au–Ag veins, shows a measured 87Sr/86Sr between 0.70440 and 0.70460, εNd between + 2.2 and + 3.2 and 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 18.964 to 19.028; 15.561 to 15.570; and 38.640 to 38.745, respectively. The 87Sr/86Sr and εNd values of rocks from the Arquia Group range from 0.70431 to 0.73511 and − 12.91 to + 10.0, respectively, whereas the corresponding Pb isotopic ratios (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) range from 18.948 to 19.652; 15.564 to 15.702; and 38.640 to 38.885, respectively. 87Sr/86Sr and εNd values obtained on sulfides from the gold quartz veins, which occur at shallow and intermediate levels, range from 0.70500 to 0.71210 and from − 1.11 to + 2.40. In the deepest veins, εNd values lie between + 1.25 and + 3.28 and the 87Sr/86Sr of calcite and pyrite fall between 0.70444 and 0.70930. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of all mineralization are in the ranges 18.970 to 19.258; 15.605 to 15.726 and 38.813 to 39.208, respectively. Carbonates have an average 87Sr/86Sr ratio of 0.70445, which is within the range of values measured in the host dacite. The Sr isotopic data indicate that carbonic fluids have a restricted hydrothermal circulation within the host igneous body, while the Sr, Pb and Nd isotopic compositions of the sulfides suggest that the fluids not only circulated within the Marmato stock, but also throughout the Arquia Complex, inferring that these rocks offer a potential target for mineral exploration. Based on geological and geochronological evidence, the epizonal Marmato gold ores formed during the Miocene to Pliocene, as a result of cooling of the Marmato stock and reactivation along a crustal-scale fault zone related to thermal processes in an accretionary oceanic–continental plate orogen.  相似文献   

20.
The Xujiashan antimony deposit is hosted by marine carbonates of the Upper Sinian Doushantuo and Dengying Formations in Hubei Province, South China. Our Sr isotopic data from pre‐ and syn‐mineralization calcites that host the mineralization show that the pre‐mineralization calcite displays a narrow range of 87Sr/86Sr ratios (0.7096 to 0.7097), similar to the ratios of the Sinian seawater, and high Sr concentrations (2645 to 8174 ppm). In contrast, the syn‐mineralization calcite exhibits low Sr concentrations (785 to 2563 ppm) and high 87Sr/86Sr ratios (0.7109 to 0.7154), which is interpreted as the result of addition of radiogenic strontium during the antimony mineralization. The study of Sr isotopes suggests that their Sr component to the pre‐mineralization calcite derived directly from the host rocks (i.e. the Sinian marine carbonates), while radiogenic 87Sr for the syn‐mineralization calcite derived from the underlying Mesoproterozoic Lengjiaxi Group basement through hydrothermal fluid circulation along the major fault that hosts the mineralization. The Pb isotopic ratios of stibnite are subdivided into two groups (Group A and Group B), Group A is characterized by higher radiogenic lead, with 206Pb/204Pb = 18.874 to 19.288, 207Pb/204Pb = 15.708 to 15.805, and 208Pb/204Pb = 38.642 to 39.001. Group B shows lower lead isotope ratios (206Pb/204Pb = 17.882 to 18.171, 207Pb/204Pb = 15.555 to 15.686, and 208Pb/204Pb = 37.950 to 38.340). The single‐stage model ages of Group A are mainly negative or slightly positive values (‐258 to 3 Ma), while those of Group B range from 636 to 392 Ma, with an average of 495 ± 65 Ma. In addition, there are positive linear correlations among Pb isotopic ratios. These results suggest that the lead of Group A stibnite was mainly derived from the Sinian marine carbonates, and that of Group B stibnite from the underlying Lengjiaxi Group basement. This conclusion is consistent with the results of the Sr isotopes. These results indicate that the Xujiashan deposit is not syngenetic sedimentary and in situ reworked origin as previously considered. The metal (mainly Sb) of this deposit was not only derived from the Sinian host rocks, but also partly derived from the underlying Mesoproterozoic Lengjiaxi Group basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号