首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The data on the supra-ice snow, ice, under-ice water, and benthic algal flora obtained in 2007–2008 by sampling in the estuary of the Severnaya Dvina River are analyzed. The river ice and under-ice water in the estuarine zone and in the channel part of the Severnaya Dvina differed greatly in the algal flora’s composition. The fresh water species never exceeded 8.6%, while the ice algae composed 90–96% of the total ice inhabitants’ biomass. In the under-ice water, this value did not exceed 58–64%. The bacteria in the ice composed not more than 2.5–10% of the total biomass, while, in the under-ice water, 36–49%. The shares of ciliates (0.04%) and nematodes (0.005–1.6%) in the total biomass were negligible. In the estuarine zone, the ice was inhabited mainly by nematodes (78% of the total biomass), while, in the river, their share decreased to 9%. The contribution of bacteria was 15% in Dvina Bay and increased to 61% in the river. The importance of algae in the snow was minor: 7% of the total biomass in the marine zone and 30% in the river region. High species diversity of the algal flora in the sandy and sandy-silty littoral grounds was revealed. The values of the total biomass of the bottom algal flora (0.38 g C/m2) were only two to three times lower than the values revealed in similar habitats in the summer. The epipelithic forms (0.15 g C/m2) dominated, being represented by 46 species of algae (49%). The shares of epipsammonic (0.12 g C/m2) and planktonic (0.11 g C/m2) species were almost equal to each other: 25 and 22 species, respectively (27 and 24%).  相似文献   

2.
莱州湾大型底栖动物群落结构及其动态变化特征   总被引:1,自引:0,他引:1  
本文以莱州湾2009年夏季(8月)、秋季(10月)及2010年春季(5月)、夏季(8月)4个季节大型底栖动物资料为基础,对莱州湾大型底栖动物的种类组成、丰度、生物量、优势种进行了研究,同时与历史资料进行对比,探讨了莱州湾大型底栖动物的群落结构特征及动态变化。4个航次中共鉴定出大型底栖动物272种,其中包括环节动物多毛类122种,软体动物46种,甲壳动物64种,棘皮动物18种,鱼类9种,其他类13种。调查海域平均丰度为(1 102.56±216.32) ind./m2,多毛类在丰度上占绝对优势;平均生物量为(28.16±8.45) g/m2,软体动物占据优势。丰度和生物量空间分布规律具有很强的相似性,低值区位于莱州湾西部黄河口邻近海域,高值区位于渤海中部海域。丰度和生物量季节变化明显,夏季最高,秋季其次,春季最低。多毛类不倒翁虫(Sternaspis sculata)、寡鳃齿吻沙蚕(Nephthys oligobranchia)、紫壳阿文蛤(Alvenius ojianus)等是莱州湾调查海域的优势种。通过与历史资料的对比发现,莱州湾大型底栖动物种类组成及优势种类出现小型化的趋势。  相似文献   

3.
Seasonal variations in zooplankton abundance,biomass,species diversity and community structure were investigated in the Sanmen Bay,China.Samples were collected from 15 stations,on the seasonal basis,in April(spring),July(summer) and October 2005(autumn) and January 2006(winter),respectively.The results show that zooplankton species number,abundance and biomass varied widely and had distinct spatial heterogeneity in the Sanmen Bay.A total of 72 species of zooplankton belonging to 56 genera and 17 groups of pelagic larvae were identified.The zooplankton species richness was strongly related to salinity.Based on hierarchical cluster analysis,zooplankton in this study area were classified into three groups:coastal,neritic and pelagic groups,which corresponded to the upper,middle and lower portion of the Sanmen Bay,respectively.The coastal low-saline species were dominant in the study area.The zooplankton abundance and biomass reached a peak in summer,moderate in spring and autumn,and the lowest in winter.Zooplankton abundance decreased from the upper to lower portion of the bay in April,when the highest biomass occurred in the middle portion of the bay.There were the same spatial distribution patterns for the biomass and abundance in July,with the maximum in the middle of the bay.However,zooplankton abundance was the highest in the middle of the bay in October,when maximum biomass occurred near the lower of the bay.Zooplankton abundance and biomass were evenly distributed in the Sanmen Bay in January.Spatial and temporal variations in zooplankton and their relationship with environmental factors were also analyzed.The BIOENV results indicate that the combination of chlorophyll a(Chl-a),salinity,dissolved inorganic nitrogen(DIN),dissolved oxygen(DO) and silicate(SiO3) was responsible for the variations in zooplankton community structure in the Sanmen Bay.The environmental changes played an important role in changes in the zooplankton community structure in the Sanmen Bay.  相似文献   

4.
The seasonal dynamics of molluscan assemblages inhabiting the algal fronds and the underlying sediment of photophilous algae were analyzed in NW Alboran Sea between July 2007 and April 2008. Molluscs were sampled using SCUBA in two different algal stands (7 km apart) dominated by the brown algae Stypocaulon scoparium, and following an inter-strata sampling protocol consisting in first sampling the algal fronds and then the underlying substratum. The studied algal stands harbored a highly biodiverse malacofauna, with 193 species identified. Assemblages on algal fronds and sediment displayed significant seasonal variations, being more apparent on the fronds, with maximum species richness, abundance and Shannon–Wiener diversity values in summer in both strata. The between-strata differences were also observed in the trophic structure of the assemblages: algal fronds were quantitatively dominated by microalgae or periphyton grazers and the sediment by detritivores and plankton and seston feeders. The high dominance of some species resulted in lower values of diversity and evenness in autumn in the sediment (e.g. Nodulus contortus and Bittium reticulatum) and in spring on the fronds (e.g. Rissoa guerinii and Musculus costulatus). The seasonal variability of the assemblages was mainly related to the population dynamics of dominant species (22 spp. displaying dominance values > 1%) (i.e. recruitment events, high mortality rates of juveniles and/or migrations among habitats). Other factors analyzed were (1) the vegetative cycle of algae, which played an important role in the abundance of some dominant epifaunal grazers, with high abundance and species richness values coinciding with high biomass of algae; and (2) the percentage of organic matter in the sediment, which was related to the abundance changes of some depositivores species. Further conservation strategies for macroalgal stands should be taken into consideration, as this type of photophilous habitat harbors rich associated faunistic communities and it is not generally considered in conservation lists of habitats to be protected.  相似文献   

5.
浮游植物群落结构的时空变化对生物地球化学循环、全球气候及渔业资源具有重要的影响.本文采用ROMS-CoSiNE高分辨率数值模拟结果,分析了渤海浮游植物生物量和群落结构的时空分布特征,讨论了浮游植物群落结构时空差异的主要影响因素.结果表明,渤海表层叶绿素浓度和甲硅藻比在冬季最低、夏季最高.叶绿素浓度呈条带状分布,甲硅藻比...  相似文献   

6.
The microscopic community of a microtidal sandy sediment on the Swedish west coast was studiedin situat two depths (0·5 and 4 m) on four occasions (January, April, August and October). Biomass of microalgae, bacteria, ciliates and meiofauna, as well as primary and bacterial productivity, were quantified. Meiofaunal grazing on algae and bacteria was measured simultaneously by radiolabelling intact sediment cores. Autotrophic biomass dominated the microbial community at both depths and on all sampling occasions, accounting for 47–87% of the microbial biomass. Meiofauna contributed 10–47%, while bacteria and ciliates together made up less than 6%. The microflora was dominated by attached (epipsammic) diatoms, but occasional ‘ blooms ’ of motile species occurred. Vital cells of planktonic diatoms contributed to benthic algal biomass in spring. Primary productivity exceeded bacterial productivity in April and August at both depths, while the balance was reversed in October and January. Meiofauna grazed between 2 and 12% of the algal biomass per day, and between 0·3 and 37% of the bacterial biomass. Almost an order of magnitude more algal (17–138 mg C m−2) than bacterial (0·1–33 mg C m−2) carbon was grazed daily. At the shallow site, primary productivity always exceeded grazing rates on algae, whereas at the deeper site, grazing exceeded primary productivity in October and January. Bacterial productivity exceeded grazing at both depths on all four occasions. Thus, meiofaunal grazing seasonally controlled microalgal, but not bacterial, biomass. These results suggest that, during summer, only a minor fraction (<10%) of the daily microbenthic primary production appears to enter the ‘ small food web ’ through meiofauna. During spring and autumn, however, a much larger fraction (≈30–60%) of primary production may pass through meiofauna. During winter, meiofaunal grazing is a less important link in the shallow zone, but at sublittoral depths, algal productivity may be limiting, and meiofauna depend on other food sources, such as bacteria and detritus.  相似文献   

7.
R. La  Ferla  A. Allegra    F. Azzaro    S. Greco  E. Crisafi 《Marine Ecology》1995,16(4):307-315
Abstract. This paper reports on the temporal distribution of microbial biomass, over a I-month survey during austral suinmer 1990. at two sampling stations in Terra Nova Bay (Antarctica) by means of biochemical methodologies such as ATP (adenosine triphosphate) and LPS (lipopolysaccharides). Microbial estimates. derived from ATP measurements. showed an unstable temporal trend and a range characteristic for water with low or. seldom. moderate trophism. Biomass decreased with increasing depth. and photo-autotrophic organisms seem to dominate the whole microbial assemblage. The bacterial population, as derived from LPS determinations, did not show much variability and was well-correlated to other microbiological and chemical parameters. Our data showed that larger mic-roplankters were dominant. but that sometimes pico-sized organisms contributed about 60% to the microbial biomass; this emphasizes the 'still poorly-known' importance of microbes in Antarctic food webs.  相似文献   

8.
Distribution and biomass of green algal mats were studied in marine shallow (0–1 m) soft-bottom areas on the Swedish west coast from 1994 to 1996, by combining aerial photography surveys with ground truth sampling. Filamentous green algae, dominated by species of the genera Cladophora and Enteromorpha, were generally present throughout the study area during July and August, and largely absent in late April and early May. These algae occurred at 60 to 90% of the locations investigated during the summer, and were estimated to cover between 30 and 50% of the total area of shallow soft bottoms of the Swedish Skagerrak archipelago. The distributional patterns were similar during the three years of the investigation and appeared unrelated to annual local nutrient inputs from point sources and river discharge. We postulate that the apparent lack of such a relationship is due to an altered state of nutrient dynamics throughout the archipelago. Mechanisms are likely to involve long-term, diffuse elevations in nutrient levels in coastal waters of the Skagerrak and the Kattegat over several decades leading to current eutrophic conditions, exceeding nutrient requirements for abundant filamentous algal growth. Patterns of algal abundance in our study were largely related to physical factors such as exposure to wind, waves and water exchange under conditions where nutrient loads among embayments seemed to be unlimited. Further, our results show that sediments covered by algal mats had higher carbon and nitrogen contents than unvegetated sediments. We hypothesise that sustained high nutrient loads, manifested in extensive biomass of filamentous algae during summer months, are re-mineralised via decay and sedimentation in the benthic realm. Hence, accumulated carbon and nutrients in the sediment could, in turn, constitute the basic pool for future algal mat production overlying soft bottoms in areas where tidal exchange is limited.  相似文献   

9.
A. Yu. Gukov 《Oceanology》2011,51(3):443-448
Eight bottom biocenoses were observed in the Novosibirsk Polynya region. The species composition of these communities was common for the areas of the dominating of the surface arctic water masses. The biocenoses were characterized by a high population density (up to 3200 ind. per m−2) and an elevated biomass (up to 233.5 g per m−2). The number of species increased seaward and according to the bottom’s depth. The patterns of the spatial distribution of the macrobenthos biomass were closely related to the bottom sediment types and the salinity patterns. The macrobenthos biomass was significantly higher in the areas where the surface arctic water masses dominated as compared to the arctic estuary water mass regions. The areas of these two water masses’ convergence were characterized by significantly lower biomass values. The maximal macrobenthos biomass was observed in the cores of the water mass areas.  相似文献   

10.
烟台月亮湾岩岸潮间带底栖海藻群落结构的季节变化   总被引:3,自引:0,他引:3  
月亮湾岩岸潮间带底栖海藻群落的种类组成存在显著的季节差异 ,春季群落的种类最丰富 (2 7种 ) ,其次为秋季群落 (2 6种 ) ,夏季和冬季较少 (2 2和 2 1种 ) ,4个季节群落的共有种仅为 7种。各季节群落中均以红藻的种类最丰富 ,褐藻次之 ,绿藻最少。在 4个季节群落中生物量的变化如下 :夏季 >秋季 >冬季 >春季。绿藻和褐藻类群主要为暖温性种类 ,而红藻类群比较复杂 ,即有暖温带性的、温带和暖水性种类 ,也有寒温带的冷水性种类。4个季节群落的物种优势度序列存在明显的差异 ,海黍子在春季和冬季为群落的第 1优势种 ,而孔石莼在夏季和秋季为第 1优势种。不同季节群落多样性指数变化如下 :物种丰富度指数 ,春季 >秋季 >冬季 >夏季 ;物种多样性指数 ,秋季 >夏季 >春季>冬季 ;均匀度指数 ,春季 >夏季 >冬季 >秋季  相似文献   

11.
南长山岛岩岸潮间带底栖藻类群落结构的季节变化格局   总被引:4,自引:0,他引:4  
南长山岛岩岸潮间带底栖藻类群落的种类组成存在显著的季节差异,4个季节的群落共有种为8种:孔石莼、海黍子、石花菜、江蓠、叉枝藻、小石花菜、叉枝伊谷草和瘤枝凹顶藻。4个季节群落中生物量的变化为:秋季>夏季>冬季>春季。绿藻和褐藻类群主要为暖温性种类,而红藻类群比较复杂,既有暖温带、温带和亚热带性种类,也有寒温带的冷水性种类。4个季节群落的物种优势度序列存在明显的差异,海黍子在春季、夏季和冬季3个群落为第一优势种,瘤枝凹顶藻在秋季为第一优势种。不同季节群落多样性指数变化如下:物种丰富度指数,春季>秋季>冬季>夏季;物种多样性指数,冬季=秋季>春季>夏季;均匀度指数,冬季=秋季>春季>夏季。群落的多样性由红藻类群控制。  相似文献   

12.
南麂列岛潮间带海藻资源与生态   总被引:8,自引:0,他引:8  
本文报道了1992年5月~1993年3月南麂列岛潮间带海藻四季调查结果。共鉴定大型海藻121种,隶属于66个属,其中红藻类82种,褐藻类25种,绿藻类12种,蓝藻类2种。海藻组成以暖温性与亚热带性种类占优势。海藻区系特征与台湾暖流和浙江沿岸流对本海域影响密切相关。该区域海藻的种类组成、数量分布和垂直分布,都有明显的季节变化。本文还分析了海藻分布与生态环境因子的关系,认为潮汐主导海藻的垂直分布,温度决定海藻分布的季节变化。  相似文献   

13.
The species composition and seasonal dynamics of the population density and biomass of the prasinophycean algae of the genus Pyramimonas were investigated in the Russian waters of the East/Japan Sea. According to literature data and the results of our observations, eight species of the prasinophycean algae were identified, and some of them were new for the Russian waters of the East/Japan Sea as follows: P. aff. amylifera Ñonrad, P. aff. cordata McFadden, Hill et Wetherbee, and P. nansenii Braarud. An analysis of their seasonal dynamics showed that the most conspicuous winter peak of the population density of Pyramimonas species in the Amurskii Bay was clearly distinguishable in February. In winter and early spring, the prasinophycean algae made a considerable contribution of 28 to 60% into the total population density on the background of a relatively low biomass, 1.1–14.4% of the total phytoplankton biomass in the Amurskii Bay. In the Golden Horn Bay, the summer peak of the population density of Pyramimonas species was most intensive in June. In summer, during the period of mass development of the algae of the genus Pyramimonas in the Golden Horn Bay, the prasinophycean algae contributed up to 71% of the total population density and up to 84% of the total microalgal biomass. An increase was noted in the density and biomass of the Pyramimonas species in the polluted waters near the sewage water outlets in the Amurskii and Golden Horn bays.  相似文献   

14.
基于2016-2017年4个季节航次数据,分析了湛江湾真光层深度与初级生产力的时空变化特征及其影响因素。结果表明,湛江湾真光层深度平均值为(6.95±3.17)m,空间变化比季节变化明显,Kd(PAR)与浊度存在显著的正相关关系,建立的线性回归模型R2为0.73(p<0.01),表明悬浮颗粒物对湛江湾真光层深度的影响占主导地位。利用VGPM模型得到初级生产力(以碳计)的平均值为(639.53±427.95)mg/(m2·d),其时空特征与真光层深度基本保持一致,真光层深度比叶绿素a浓度更能解释初级生产力的时空分布模式。  相似文献   

15.
Coral mortality may result in macroalgal proliferation or a phase shift into an alga-dominated state. Subtidal, high-latitude western Indian Ocean coral communities at Sodwana Bay on the KwaZulu-Natal coast, South Africa, have experienced some mortality because of warm-water anomalies, storms and other causes, but the response of the macroalgae is unknown. We investigated the abundance and diversity of benthic algae on different hard natural substrata (dead digitate, brain and plate corals and beach rock) on Two-Mile Reef, Sodwana Bay. We also compared algal communities colonising ceramic, marble and pretreated ceramic tiles placed on the reef for six months. We identified 95 algae (14 Chlorophyta, 11 Phaeophyceae, 69 Rhodophyta and one cyanobacterium). Assemblages on natural and artificial substrata were dominated by the brown alga Lobophora variegata (Lamouroux) Womersley ex Oliveira and non-geniculate corallines (Rhodophyta, Corallinaceae). Cluster and ordination analyses revealed that the algae showed no affinity for particular substrata, whether natural or artificial. Algal cover was occasionally higher on rougher tiles and crustose corallines were significantly more abundant on marble than ceramic tiles. Two-Mile Reef had 23.1% dead and 48.4% live scleractinian coral cover, where dead corals were colonised indiscriminately by many small algal species, but there was no evidence of algal proliferation. The results provide a baseline for monitoring this high-latitude reef system.  相似文献   

16.
刘赛  杨庶  杨茜  孙耀 《海洋学报》2018,40(1):47-56
对取自桑沟湾北西南三根柱样近200 a碳来源及埋藏通量的解析,分析了湾内不同站位各形态碳的差异性,进而对全湾碳埋藏进行了估算。湾内环流、贝藻养殖等造成湾内不同区域碳埋藏的差异;桑沟湾总碳(TC)平均量1.79%,有机碳(TOC)平均量0.54%,无机碳(TIC)平均量1.25%,TOC含量相对较小,为海陆混合来源,以陆源有机碳(Ct)为主,大规模人工养殖后,海源有机碳(Ca)有明显增加的趋势。桑沟湾碳埋藏通量平均为228.9 g/(m2·a),以无机碳为主要埋藏形式(约占70%),高的沉积速率及生物残骸沉降使桑沟湾养殖区碳的来源及埋藏区别于其他陆架海域。  相似文献   

17.
Populations dominated by Cystoseira zosteroides, an endemic and threatened Mediterranean seaweed, colonize deep-water rocky habitats down to more than 50 m depth. Assemblages dominated by this species display high algal and invertebrate species richness. Algal biomass averages 1134 g dw m−2. Erect and turf algae account for only 25% of total algal dry weight, while encrusting corallines are responsible for the remaining 75%. Sponges, bryozoans and ascidians constitute the dominant sessile macrofauna. Cystoseira zosteroides is the dominant erect algae, with a mean biomass of 60.6 g dw m−2, and densities ranging from 4 to 7 plants m−2. The alien turf alga Womersleyella setacea has a biomass of 104.2 g dw m−2 and covers most of the understory substrate. The size-frequency distribution of C. zosteroides populations shows differences over time. Mean annual growth of the main axis is around 0.5 cm and mean annual mortality rate is lower than 2%. Recruitment was almost nil during the studied period of time (10 years). Processes structuring these deep-water Cystoseira stands must be driven by episodic disturbances, after-disturbance recruitment pulses, and long periods of steady growth that last at least 10 years. However, it is also possible that recruitment is irreversibly inhibited by the alien alga W. setacea in which case these old-growth stands are faced with extinction. The highly diversified assemblages and the low growth and low mortality rates of C. zosteroides indicate high vulnerability to natural and anthropogenic disturbances, and call for effective measures to ensure their conservation.  相似文献   

18.
1 IntroductionMesozooplankton (0.2 ~20 mm) are hetero-trophic animals that inhabit almost every type of ma-rine environment (Goswami and Padmavati, 1996;Uye et al., 1996). They are major secondary pro-ducers, grazing on phytoplankton and providing foodfor…  相似文献   

19.
Seasonal variations in the picoplankton community were investigated from June 2002 to March 2004 within the photic zone of Sagami Bay, Japan. The study area was mostly dominated by coastal waters during the warm period (mixed layer water temperature ≥ 18°C). During the cold period (mixed layer water temperature ≤ 18°C), the water mass was characterized by low temperature and high saline waters indicative of the North Pacific Subtropical Mode Water (NPSTMW). Occasionally, a third type of water mass characterized by high temperature and low saline properties was observed, which could be evidence of the intrusion of warm Kuroshio waters. Synechococcus was the dominant picophytoplankton (5−28 × 1011 cells m−2) followed by Prochlorococcus (1−5 × 1011 cells m−2) and picoeukaryotes during the warm period. Heterotrophic bacteria dominated the picoplankton community throughout the year, especially in the warm period. During the Kuroshio Current advection, cyanobacterial abundance was high whereas that of picoeukaryotes and heterotrophic bacteria was low. During the cold period, homogeneously distributed, lower picophytoplankton cell densities were observed. The dominance of Synechococcus in the warm period reflects the importance of high temperature, low salinity and high Photosynthetically Active Radiation (PAR) on its distribution. Cyanobacterial and heterotrophic bacterial abundance showed a positive correlation with temperature. Prochlorococcus and picoeukaryotes showed a positive correlation with nutrients. Picoeukaryotes were the major contributors to the picophytoplankton carbon biomass. The annual picophytoplankton contribution to the photosynthetic biomass was 32 ± 4%. These observations suggest that the environmental conditions, combined with the seasonal variability in the source of the water mass, determines the community structure of picoplankton, which contributes substantially to the phytoplankton biomass and can play a very important role in the food web dynamics of Sagami Bay.  相似文献   

20.
扎龙湿地是我国北方同纬度地区保留最完整、最原始、最开阔的湿地生态系统,地处中温带,属大陆性季风气候。为了探究其藻类植物群落的变化特征及其与水环境的关系,本文于2011年春、夏、秋季对扎龙湿地的藻类植物群落进行调查分析,共发现藻类植物349个分类单位(包括变种、变型),隶属于8门105属,藻类植物群落全年均以绿藻为主导,其组成呈绿藻-硅藻型。优势种中绿藻门主要以镰形纤维藻(Ankistrodesmus falcatus)和四尾栅藻(Scenedesmus quadricauda)为主,硅藻门以弯棒杆藻(Rhopalodia gibba)和隐头舟形藻(Navicula cryptocephala)为主,优势种组成具有明显的季节演替现象。藻类植物细胞密度呈现明显的单峰型,夏季最高,平均为10.74×10~4ind./L。湿地研究区域分为开阔型水域、小型封闭水域、湿地型水域和湖泊型水域四个生态类型,不同水域藻类植物群落结构特征明显不同。经聚类和多维尺度分析,将不同采样点的藻类植物群落分为四组,多样性指数表明湿地水体处于轻度污染或无污染状态。综合研究结果可以认为扎龙湿地的水体基本处于贫营养-中营养状态,只有极少数水域处于富营养状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号