首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
ECMWF模式地面气温预报的四种误差订正方法的比较研究   总被引:16,自引:5,他引:11  
李佰平  智协飞 《气象》2012,38(8):897-902
采用均方根误差对欧洲中期天气预报中心(ECWMF)确定性预报模式2007年1月至2010年12月的地面气温预报结果进行评估,并分别利用一元线性回归、多元线性回归、单时效消除偏差和多时效消除偏差平均的订正方法,对ECMWF模式地面气温预报结果进行订正。结果表明,4种订正方法都能有效地减小地面气温多个时效预报的误差,改进幅度约为1℃。在短期预报中仅考虑最新预报结果的一元线性回归订正方法要优于考虑多个预报结果的多元集成预报订正方法。在中期预报中考虑多个预报结果的多元集成预报订正方法更优,更稳定。在模式预报误差较大的情况下,多时效集成的订正方法能更稳定地减小误差。  相似文献   

2.
Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.  相似文献   

3.
The Second Global Land Atmosphere Coupling Experiment (GLACE2) is designed to explore the improvement of forecast skill of summertime temperature and precipitation up to 8?weeks ahead by using realistic soil moisture initialization. For the European continent, we show in this study that for temperature the skill does indeed increase up to 6 weeks, but areas with (statistically significant) lower skill also exist at longer lead times. The skill improvement is smaller than shown earlier for the US, partly because of a lower potential predictability of the European climate at seasonal time scales. Selection of extreme soil moisture conditions or a subset of models with similar initial soil moisture conditions does improve the forecast skill, and sporadic positive effects are also demonstrated for precipitation. Using realistic initial soil moisture data increases the interannual variability of temperature compared to the control simulations in the South-Central European area at longer lead times. This leads to better temperature forecasts in a remote area in Western Europe. However, the covered range of forecast dates (1986–1995) is too short to isolate a clear physical mechanism for this remote correlation.  相似文献   

4.
基于TIGGE资料中的欧洲中期天气预报中心、英国气象局、美国国家环境预报中心、韩国气象厅和日本气象厅2015年1月1日—9月30日中国及周边地区地面2 m气温24~168 h集合预报资料,利用长短期记忆神经网络(Long Short-Term Memory,LSTM)、浅层神经网络(Neural Networks,NN)、滑动训练期消除偏差集合平均(BREM)和滑动训练期多模式超级集合(SUP)方法对2015年9月5—30日26 d预报期进行集成预报试验。结果表明,BREM对5个单模式进行等权集成,预报结果易受预报效果较差模式的影响,整体预报技巧略低于单个最优模式ECMWF的预报技巧。其中在新疆南部,等权集成后的预报技巧更低。SUP的预报结果比所有单个模式预报更为准确。在144 h之前,SUP的误差明显小于ECMWF的预报误差,但随预报时效增加,误差增长幅度增大。NN对地面气温的预报效果与SUP的预报效果相当。LSTM整体预报效果最好,特别是在预报时效较长(超过72 h)时,比其他方法预报准确率明显提高。LSTM神经网络方法明显改进了我国西北、华北、东北、西南和华南大部分地区的气温预报,但在南疆部分地区误差较大。  相似文献   

5.
Based on the reforecast data (1999–2010) of three operational models [the China Meteorological Administration (CMA), the National Centers for Environmental Prediction of the U.S. (NCEP) and the European Centre for Medium-Range Weather Forecasts (ECMWF)] that participated in the Subseasonal to Seasonal Prediction (S2S) project, we identified the major sources of subseasonal prediction skill for heatwaves over the Yangtze River basin (YRB). The three models show limited prediction skills in terms of the fraction of correct predictions for heatwave days in summer; the Heidke Skill Score drops quickly after a 5-day forecast lead and falls down close to zero beyond the lead time of 15 days. The superior skill of the ECMWF model in predicting the intensity and duration of the YRB heatwave is attributable to its fidelity in capturing the phase evolution and amplitude of high-pressure anomalies associated with the intraseasonal oscillation and the dryness of soil moisture induced by less precipitation via the land–atmosphere coupling. The effects of 10–30-day and 30–90-day circulation prediction skills on heatwave predictions are comparable at shorter forecast leads (10 days), while the biases in 30–90-day circulation amplitude prediction show close connection with the degradation of heatwave prediction skill at longer forecast leads (> 15–20 days). The biases of intraseasonal circulation anomalies further affect precipitation anomalies and thus land conditions, causing difficulty in capturing extremely hot days and their persistence in the S2S models.  相似文献   

6.
利用TIGGE资料提供的欧洲中期天气预报中心(ECMWF)、美国国家环境预报中心(NCEP)、英国气象局(UKMO)三个预报中心2013年6月1日至8月31日的地面2 m气温10~15 d预报资料,对延伸期地面气温进行贝叶斯模式平均(Bayesian Model Averaging,BMA)预报试验。结果表明,BMA方法的预报效果随训练期长度而改变,训练期长度为30 d时预报效果最优。BMA方法可提供全概率密度函数,定量描述预报不确定性的大小,且陆地上预报不确定性大于海洋上的预报不确定性,高纬度地区预报不确定性大于低纬度地区的预报不确定性。利用CRPS评分对BMA概率预报技巧进行评估,发现预报技巧随预报时效的延长降低,且预报技巧在海洋上优于陆地、低纬度地区优于高纬度地区。此外,3 d、5 d和7 d滑动平均的预报值反映某些天气过程的平均要素预报,对于提高10~15 d延伸期概率预报技巧有一定效果,且滑动天数越长,预报效果越好。  相似文献   

7.
基于TIGGE资料的东亚地面气温预报的不一致性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于TIGGE资料中欧洲中期天气预报中心(ECMWF)、美国国家环境预报中心(NCEP)和中国气象局(CMA)3个集合预报系统的地面气温集合预报资料,运用跳跃指数研究了3个集合预报系统中东亚地面气温的控制预报及集合平均预报的不一致性。结果表明,各个集合预报系统地面气温预报的时间平均不一致性指数差异较大。ECM WF时间不一致性指数最小,NCEP次之,CM A最大。另外NCEP的控制预报、ECM WF的控制预报和集合平均预报,这三者的时间平均不一致性指数随预报时效延长而增加,且集合平均预报一致性优于控制预报。而对于CMA预报的不一致性,无论是控制预报还是集合平均预报总体上都稳定地保持在较高的水平。此外,ECMWF的地面气温冬(夏)季预报的不一致性相对较强(弱),且单点跳跃随预报时效延长变化不明显,而控制预报和集合平均预报的异号两点跳跃以及三点跳跃出现的频率总体上随预报时效延长略有增加。  相似文献   

8.
Medium to long-term precipitation forecasting plays a pivotal role in water resource management and development of warning systems.Recently,the Copernicus Climate Change Service(C3S)database has been releasing monthly forecasts for lead times of up to three months for public use.This study evaluated the ensemble forecasts of three C3S models over the period 1993-2017 in Iran’s eight classified precipitation clusters for one-to three-month lead times.Probabilistic and non-probabilistic criteria were used for evaluation.Furthermore,the skill of selected models was analyzed in dry and wet periods in different precipitation clusters.The results indicated that the models performed best in western precipitation clusters,while in the northern humid cluster the models had negative skill scores.All models were better at forecasting upper-tercile events in dry seasons and lower-tercile events in wet seasons.Moreover,with increasing lead time,the forecast skill of the models worsened.In terms of forecasting in dry and wet years,the forecasts of the models were generally close to observations,albeit they underestimated several severe dry periods and overestimated a few wet periods.Moreover,the multi-model forecasts generated via multivariate regression of the forecasts of the three models yielded better results compared with those of individual models.In general,the ECMWF and UKMO models were found to be appropriate for one-month-ahead precipitation forecasting in most clusters of Iran.For the clusters considered in Iran and for the long-range system versions considered,the Météo France model had lower skill than the other models.  相似文献   

9.
卢楚翰  林琳  周菲凡 《大气科学》2020,44(6):1337-1348
本文基于WRF模式研究了2015年5月16~17日广东西南地区的一次暴雨过程的预报误差来源。首先比较了以NCEP_FNL为初始资料的WRF模式的模拟预报(记为WRF_FNL)和ECMWF(European Centre for Medium-Range Weather Forecasts)关于该次暴雨过程的确定性预报。结果表明,ECMWF具有较高的预报技巧,因此,认为ECMWF的模式和初始场都较为准确。进一步,以ECMWF的初值作为初始场,选用相同的物理参数化方案,再次用WRF模式进行预报(预报结果记为WRF_EC)。结果表明相对WRF_FNL,WRF_EC的预报结果有明显改善。这表明,初始场的改进对预报有较大的影响,初始误差是预报误差的重要来源。进一步,分析了初始误差的主要来源区域和来源变量。结果表明,南海北部湾至广西西南区域为本次暴雨预报初始误差的主要来源区域,而初始温度场和初始湿度场则为此次暴雨预报初始误差的主要来源变量。同时改进初始温度场和湿度场可以较大程度提高本次暴雨过程的预报技巧。  相似文献   

10.
A new way to predict forecast skill   总被引:1,自引:0,他引:1  
Forecast skill (Anomaly Correlated Coefficient, ACC) is a quantity to show the forecast quality of the products of numerical weather forecasting models. Predicting forecast skill, which is the foundation of ensemble forecasting, means submitting products to predict their forecast quality before they are used.Checking the reason is to understand the predictability for the real cases. This kind of forecasting service has been put into operational use by statistical methods previously at the National Meteorological Center (NMC), USA (now called the National Center for Environmental Prediction (NCEP)) and European Center for Medium-range Weather Forecast (ECMWF). However, this kind of service is far from satisfactory because only a single variable is used with the statistical method. In this paper, a new way based on the Grey Control Theory with multiple predictors to predict forecast skill of forecast products of the T42L9 of the NMC, China Meteorological Administration (CMA) is introduced. The results show: (1) The correlation coefficients between “forecasted“ and real forecast skill range from 0.56 to 0.7 at different seasons during the two-year period. (2) The grey forecasting model GM(1,8) forecasts successfully the high peaks, the increasing or decreasing tendency, and the turning points of the change of forecast skill of cases from 5 January 1990 to 29 February 1992.  相似文献   

11.
The predictability of the position, spatial coverage and intensity of the East Asian subtropical westerly jet(EASWJ) in the summers of 2010 to 2012 was examined for ensemble prediction systems(EPSs) from four representative TIGGE centers,including the ECMWF, the NCEP, the CMA, and the JMA. Results showed that each EPS predicted all EASWJ properties well, while the levels of skill of all EPSs declined as the lead time extended. Overall, improvements from the control to the ensemble mean forecasts for predicting the EASWJ were apparent. For the deterministic forecasts of all EPSs, the prediction of the average axis was better than the prediction of the spatial coverage and intensity of the EASWJ. ECMWF performed best, with a lead of approximately 0.5–1 day in predictability over the second-best EPS for all EASWJ properties throughout the forecast range. For probabilistic forecasts, differences in skills among the different EPSs were more evident in the earlier part of the forecast for the EASWJ axis and spatial coverage, while they departed obviously throughout the forecast range for the intensity. ECMWF led JMA by about 0.5–1 day for the EASWJ axis, and by about 1–2 days for the spatial coverage and intensity at almost all lead times. The largest lead of ECMWF over the relatively worse EPSs, such as NCEP and CMA, was approximately 3–4 days for all EASWJ properties. In summary, ECMWF showed the highest level of skill for predicting the EASWJ, followed by JMA.  相似文献   

12.
基于数值模式误差分析的气温预报方法   总被引:1,自引:0,他引:1       下载免费PDF全文
采用欧洲中期天气预报中心(ECMWF)全球确定性预报模式地面气温和国家地面站点观测资料,对模式初值场误差、历史误差以及卡尔曼滤波预测误差与实况误差之间的相关性进行分析,设计了4种回归方案订正日最高、最低气温预报偏差,并与ECMWF、中央气象台和全国城镇的预报产品进行了检验对比。结果表明:采用了模式近1~3 d最高(最低)气温和模式最高(最低)气温历史平均误差、初值场误差以及卡尔曼滤波反演误差作为预报因子的改进方案效果最优,经对其2017年日最高和最低气温的预报检验,预报准确率较ECMWF原始模式预报有较明显提高,也明显优于中央气象台指导预报。在空间分布方面,其对地形较为复杂地区的改进效果更好。同时,与当前业务中质量最好的全国城镇预报相比,最高气温预报平均绝对偏差(Mean Absolute Error,MAE)较全国城镇预报低8.24%~13.97%,预报准确率提高1.24%~3.57%,日最低气温平均绝对偏差较城镇预报低9.43%~17.69%,预报准确率提高1.77%~2.72%。在3 d的预报中,对24 h时效内预报相对于48 h和72 h的改进幅度更大,订正效果更加明显。  相似文献   

13.
常规降水检验受空间及时间微小差异所带来的"双重惩罚"影响严重,邻域空间检验FSS(Fraction Skill Score)方法在确定性预报中已体现出弥补这一不足的明显优势.随着集合预报分辨率的不断提高,集合降水预报同样存在与确定性预报相似的问题.本研究将FSS方法拓展至集合预报领域,构建适用于集合预报的降水空间检验指...  相似文献   

14.
Impact of snow initialization on sub-seasonal forecasts   总被引:2,自引:1,他引:1  
The influence of the snowpack on wintertime atmospheric teleconnections has received renewed attention in recent years, partially for its potential impact on seasonal predictability. Many observational and model studies have indicated that the autumn Eurasian snow cover in particular, influences circulation patterns over the North Pacific and North Atlantic. We have performed a suite of coupled atmosphere-ocean simulations with the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble forecast system to investigate the impact of accurate snow initialisation. Pairs of 2-month ensemble forecasts were started every 15 days from the 15th of October through the 1st of December in the years 2004–2009, with either realistic initialization of snow variables based on re-analyses, or else with “scrambled” snow initial conditions from an alternate autumn date and year. Initially, in the first 15 days, the presence of a thicker snowpack cools surface temperature over the continental land masses of Eurasia and North America. At a longer lead of 30-day, it causes a warming over the Arctic and the high latitudes of Eurasia due to an intensification and westward expansion of the Siberian High. It also causes a cooling over the mid-latitudes of Eurasia, and lowers sea level pressures over the Arctic. This “warm Arctic—cold continent” difference means that the forecasts of near-surface temperature with the more realistic snow initialization are in closer agreement with re-analyses, reducing a cold model bias over the Arctic and a warm model bias over mid-latitudes. The impact of realistic snow initialization upon the forecast skill in snow depth and near-surface temperature is estimated for various lead times. Following a modest skill improvement in the first 15 days over snow-covered land, we also find a forecast skill improvement up to the 30-day lead time over parts of the Arctic and the Northern Pacific, which can be attributed to the realistic snow initialization over the land masses.  相似文献   

15.
基于集合预报系统的日最高和最低气温预报   总被引:1,自引:0,他引:1  
熊敏诠 《气象学报》2017,75(2):211-222
根据欧洲中心集合预报系统2 m气温预报的集合统计值,提出了BP-SM方法,针对中国512个台站2016年3月的日最高(低)气温做预报分析。将集合预报系统的模式直接输出、BP和BP-SM方法得到的日最高(低)气温进行了比较,结果表明:预报时效越长,BP-SM方法较之BP方法的预报优势也更明显;在1至5 d的预报中,BP-SM方法显著降低了预报绝对误差,误差在2℃以内的准确率大部分在60%以上,部分站点达到90%;正技巧评分均值大多高于30%,在青藏高原东部和南部地区超过了60%。预报正技巧站点次数在绝对误差≤2℃(1℃)范围内有所提高,对日最高气温预报准确率的提高略好于日最低气温;BP-SM方法有效地降低了预报系统偏差,较大预报误差出现次数显著减少。   相似文献   

16.
The latest operational version of the ECMWF seasonal forecasting system is described. It shows noticeably improved skill for sea surface temperature (SST) prediction compared with previous versions, particularly with respect to El Nino related variability. Substantial skill is shown for lead times up to 1?year, although at this range the spread in the ensemble forecast implies a loss of predictability large enough to account for most of the forecast error variance, suggesting only moderate scope for improving long range El Nino forecasts. At shorter ranges, particularly 3?C6?months, skill is still substantially below the model-estimated predictability limit. SST forecast skill is higher for more recent periods than earlier ones. Analysis shows that although various factors can affect scores in particular periods, the improvement from 1994 onwards seems to be robust, and is most plausibly due to improvements in the observing system made at that time. The improvement in forecast skill is most evident for 3-month forecasts starting in February, where predictions of NINO3.4 SST from 1994 to present have been almost without fault. It is argued that in situations where the impact of model error is small, the value of improved observational data can be seen most clearly. Significant skill is also shown in the equatorial Indian Ocean, although predictive skill in parts of the tropical Atlantic are relatively poor. SST forecast errors can be especially high in the Southern Ocean.  相似文献   

17.
基于TIGGE多模式集合的24小时气温BMA 概率预报   总被引:7,自引:1,他引:6  
利用TIGGE(THORPEX Interactive Grand Global Ensemble)单中心集合预报系统(ECMWF、United Kingdom Meteorological Office、China Meteorological Administration和NCEP)以及由此所构成的多中心模式超级集合预报系统24小时地面日均气温预报,结合淮河流域地面观测率定贝叶斯模型平均(Bayesian model averaging,BMA)参数,从而建立地面日均气温BMA概率预报模型.由此针对淮河流域进行地面日均气温BMA概率预报及其检验与评估,结果表明BMA模型比原始集合预报效果好;单中心的BMA概率预报都有较好的预报效果,其中ECMWF最好.多中心模式超级集合比单中心BMA概率预报效果更好,采用可替换原则比普通的多中心模式超级集合BMA模型计算量小,且在上述BMA集合预报系统中效果最好.它与原始集合预报相比其平均绝对误差减少近7%,其连续等级概率评分提高近10%.基于采用可替换原则的多中心模式超级集合BMA概率预报,针对研究区域提出了极端高温预警方案,这对防范高温天气有着重要意义.  相似文献   

18.
数值模式直接输出和经模式后处理得到的预报误差比较,是延伸期逐日要素预报应用基础。针对中国2 583个站点在2020年春季11~30天的日最高温度预报,根据欧洲数值中心的集合预报输出,首先,使用BP-SM(Back-Propagation - Self memory)法和回归法,进行确定性预报订正效果比较;结果表明BP-SM法和回归法都明显降低了预报绝对误差;在11~14天预报中,BP-SM法得到的平均绝对误差为3.3~3.6 ℃,预报准确率超过35%,订正效果更优。其次,基于模式直接输出和BP-SM法获得的概率预报,使用CRPSS (continuous ranked probability skill score)进行了可预报性分析。结果表明,在地形复杂地区,经过订正,预报准确率明显改善。对于延伸期逐日要素预报,合理的模式后处理方法是降低预报误差和提高预报能力的重要环节。   相似文献   

19.
Accurate forecasting of ocean waves is of great importance to the safety of marine transportation. Despite wave forecasts having been improved, the current level of prediction skill is still far from satisfactory. Here, the authors propose a new physically informed deep learning model, named Double-stage ConvLSTM (D-ConvLSTM), to improve wave forecasts in the Atlantic Ocean. The waves in the next three consecutive days are predicted by feeding the deep learning model with the observed wave conditions in the preceding two days and the simultaneous ECMWF Reanalysis v5 (ERA5) wind forcing during the forecast period. The prediction skill of the d-ConvLSTM model was compared with that of two other forecasting methods—namely, the wave persistence forecast and the original ConvLSTM model. The results showed an increasing prediction error with the forecast lead time when the forecasts were evaluated using ERA5 reanalysis data. The d-ConvLSTM model outperformed the other two models in terms of wave prediction accuracy, with a root-mean-square error of lower than 0.4 m and an anomaly correlation coefficient skill of ∼0.80 at lead times of up to three days. In addition, a similar prediction was generated when the wind forcing was replaced by the IFS forecasted wind, suggesting that the d-ConvLSTM model is comparable to the Wave Model of European Centre for Medium-Range Weather Forecasts (ECMWF-WAM), but more economical and time-saving.摘要海浪预报对海上运输安全至关重要. 本研究提出了一种涵盖物理信息的深度学习模型Double-stage ConvLSTM (D-ConvLSTM) 以改进大西洋的海浪预报. 将D-ConvLSTM模型与海浪持续性预测和原始ConvLSTM模型的预测技巧进行对比. 结果表明, 预测误差随着预测时长的增加而增加. D-ConvLSTM模型在预测准确度方面优于前二者, 且第三天预测的均方根误差低于0.4 m, 距平相关系数约在0.8. 此外, 当使用IFS预测风替代再分析风时, 能够产生相似的预测效果. 这表明D-ConvLSTM模型的预测能力能够与ECMWF-WAM模式相当, 且更节省计算资源和时间.  相似文献   

20.
2019年,数值预报中心开发了以GRAPES全球模式为驱动场,集合变换卡尔曼滤波为初值扰动方法,随机物理过程倾向项为模式扰动方法的10km水平分辨率GRAPES-REPS V3.0区域集合预报模式,并投入业务运行.基于该模式,作者开展了2019年7~9月夏季降水不确定性的集合预报实时试验,并从统计检验和个例分析角度,与...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号