首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
We have detected several periodicities in the solar equatorial rotation rate of sunspot groups in the catalog Greenwich Photoheliographic Results (GPR) during the period 1931?–?1976, the Solar Optical Observing Network (SOON) during the period 1977?–?2014, and the Debrecen Photoheliographic Data (DPD) during the period 1974?–?2014. We have compared the results from the fast Fourier transform (FFT), the maximum entropy method (MEM), and the Morlet wavelet power-spectra of the equatorial rotation rates determined from SOON and DPD sunspot-group data during the period 1986?–?2007 with those of the Mount Wilson Doppler-velocity data during the same period determined by Javaraiah et al. (Solar Phys. 257, 61, 2009). We have also compared the power-spectra computed from the DPD and the combined GPR and SOON sunspot-group data during the period 1974?–?2014 to those from the GPR sunspot-group data during the period 1931?–?1973. Our results suggest a ~?250-day period in the equatorial rotation rate determined from both the Mt. Wilson Doppler-velocity data and the sunspot-group data during 1986?–?2007. However, a wavelet analysis reveals that this periodicity appears mostly around 1991 in the velocity data, while it is present in most of the solar cycles covered by the sunspot-group data, mainly near the minimum epochs of the solar cycles. We also found the signature of a period of ~?1.4 years in the velocity data during 1990?–?1995, and in the equatorial rotation rate of sunspot groups mostly around the year 1956. The equatorial rotation rate of sunspot groups reveals a strong ~?1.6-year periodicity around 1933 and 1955, a weaker one around 1976, and a strong ~?1.8-year periodicity around 1943. Our analysis also suggests periodicities of ~?5 years, ~?7 years, and ~?17 years, as well as some other short-term periodicities. However, short-term periodicities are mostly present at the time of solar minima. Hence, short-term periodicities cannot be confirmed because of the larger uncertainty in the data.  相似文献   

2.
We address recent concerns that the sunspot-area measurements performed by the United States Air Force (USAF) Solar Observing Optical Network (SOON) have been underestimating sunspot areas. We examine briefly the history of SOON, and we perform an analysis of a three-decade time series of SOON measurements. By remeasuring USAF sunspot areas, we find that sunspot areas are being underestimated by between 8% and 17% due to the measuring techniques employed by SOON analysts. In particular, the SOON practice of rounding down limb-area correction factors results in some individual regions having areas reported by up to 50% less than their true values. This does not, however, account for the full discrepancy in sunspot areas between SOON and other observatories, which, in recent years, may be as high as a 50% discrepancy.  相似文献   

3.
The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters \(A\) and \(B\). These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977?–?2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.  相似文献   

4.
In view of the construction of new sunspot-based activity indices and proxies, we conducted a comprehensive survey of all existing catalogs providing detailed parameters of photospheric features over long time intervals. Although there are a fair number of such catalogs, a global evaluation showed that they suffer from multiple limitations: finite or fragmented time coverage, limited temporal overlap between catalogs, and, more importantly, a mismatch in contents and conventions. Starting from the existing material, we demonstrate how the information from parallel catalogs can be merged to form a much more comprehensive record of sunspots and sunspot groups. To do this, we use the uniquely detailed Debrecen Photoheliographic Data (DPD), which is already a composite of several ground-based observatories and of SOHO data, and the USAF/Mount Wilson catalog from the Solar Observing Optical Network (SOON). We also outline our cross-identification method, which was needed to match the non-overlapping solar active-region nomenclature. This proved to be the most critical and subtle step when working with multiple catalogs. This effort, focused here first on the last two solar cycles, should lead to a better central database that collects all available sunspot group parameters to address future solar-cycle studies beyond the traditional sunspot-index time series [R i].  相似文献   

5.
The Debrecen Photoheliographic Data catalogue is a continuation of the Greenwich Photoheliographic Results providing daily positions of sunspots and sunspot groups. We analyse the data for sunspot groups focussing on meridional motions and transfer of angular momentum towards the solar equator. Velocities are calculated with a daily shift method including an automatic iterative process of removing the outliers. Apart from the standard differential rotation profile, we find meridional motion directed towards the zone of solar activity. The difference in measured meridional flow in comparison to Doppler measurements and some other tracer measurements is interpreted as a consequence of different flow patterns inside and outside of active regions. We also find a statistically significant dependence of meridional motion on rotation velocity residuals confirming the transfer of angular momentum towards the equator. Analysis of horizontal Reynolds stress reveals that the transfer of angular momentum is stronger with increasing latitude up to about \(40^{\circ}\), where there is a possible maximum in absolute value.  相似文献   

6.
Wauters  L.  Dominique  M.  Milligan  R.  Dammasch  I. E.  Kretzschmar  M.  Machol  J. 《Solar physics》2022,297(3):1-22

In most of the solar cycles, activity in the northern and southern hemispheres peaks at different times. One hemisphere peaks well before the other, and at least one of the hemispheric maxima frequently does not coincide with the whole sphere maximum. Prediction of the maximum of a hemisphere and the corresponding north–south asymmetry of a solar cycle may help to understand the mechanisms of the solar cycle, the solar-terrestrial relationship, and solar-activity influences on space weather. Here we analysed the sunspot-group data from the Greenwich Photoheliographic Results (GPR) during 1874?–?1976 and Debrecen Photoheliographic Data (DPD) during 1977?–?2017 and studied the cycle-to-cycle variations in the values of 13-month smoothed monthly mean sunspot-group area in the whole sphere (WSGA), northern hemisphere (NSGA), and southern hemisphere (SSGA) at the epochs of maxima of Sunspot Cycles 12?–?24 and at the epochs of maxima of WSGA, NSGA, and SSGA Cycles 12?–?24 (note that solar-cycle variation of a parameter is expressed as a cycle of that parameter). The cosine fits to the values of WSGA, NSGA, and SSGA at the maxima of sunspot, WSGA, NSGA, and SSGA Cycles 12?–?24, and to the values of the corresponding north–south asymmetry, suggest the existence of a ≈132-year periodicity in the activity of the northern hemisphere, a 54?–?66-year periodicity in the activity of the southern hemisphere, and a 50?–?66 year periodicity in the north–south asymmetry in activity at all the aforementioned epochs. By extrapolating the best-fit cosine curves we predicted the amplitudes and the corresponding north–south asymmetry of the 25th WSGA, NSGA, and SSGA cycles. We find that on average Solar Cycle 25 in sunspot-group area would be to some extent smaller than Solar Cycle 24 in sunspot-group area. However, by inputting the predicted amplitudes of the 25th WSGA, NSGA, and SSGA cycles relationship between sunspot-group area and sunspot number we find that the amplitude (\(130\pm 12\)) of Sunspot Cycle 25 would be slightly larger than that of reasonably small Sunspot Cycle 24. Still it confirms that the beginning of the upcoming Gleissberg cycle would take place around Solar Cycle 25. We also find that except at the maximum of NSGA Cycle 25 where the strength of activity in the northern hemisphere would be dominant, the strength of activity in the southern hemisphere would be dominant at the maximum epochs of the 25th sunspot, WSGA, and SSGA cycles.

  相似文献   

7.
INTER-CYCLE VARIATIONS OF SOLAR IRRADIANCE: SUNSPOT AREAS AS A POINTER   总被引:1,自引:0,他引:1  
Fligge  M.  Solanki  S. K. 《Solar physics》1997,173(2):427-439
Most of the present models and reconstructions of solar irradiance use the concept of Photometric Sunspot Index (PSI) to account for the influence of sunspots on solar brightness. Since PSI is based on measured sunspot areas a firm database of such areas is essential. We show, however, that a significant disagreement exists between the data provided by the Royal Greenwich Observatory (from 1874 to 1976) and newer measurements provided by the observatories of Rome, Yunnan, Catania, and the US Air Force. The overlap of the time intervals over which sunspot areas were measured at Greenwich and Rome allows us to quantify the difference between the Greenwich and other data sets. We find that the various data sets differ, at least in a statistical sense, mainly by a correction factor of between 1.15 and 1.25.The revised time series of sunspot areas correlates well with the Zürich sunspot relative numbers over the last 120 years, with the relationship between sunspot areas and sunspot numbers changing only slightly from one cycle to the next. In particular, no indication exists for any extraordinary magnetic behavior of the Sun during the last 2 decades, as might falsely be concluded if the various sunspot area data sets are uncritically combined. There are, however, some indications that cycles 15 and 16 deviate from the rest. We expect that our results should have a significant influence on the reconstruction of the historical solar irradiance.  相似文献   

8.
Peter Foukal 《Solar physics》2014,289(5):1517-1529
Several studies have shown that the sunspot areas recorded by the Royal Greenwich Observatory (RGO) between 1874?–?1976 are about 40?–?50 % larger than those measured by the NOAA/USAF Solar Observing Optical Network (SOON) since 1966. We show here that while the two measurement sets provide consistent total areas for large spots, the impossibility of recording small spots as anything except dots in the SOON drawings leads to an underestimate of small spot areas. These are more accurately recorded by the RGO and other programs that use photographic or CCD images. The large number of such small spots is often overlooked. A similar explanation holds for the RGO umbral areas, which amount to 40 % more than those measured from Mt. Wilson data between 1923 and 1982. The neglected small spots have a much lower photometric contrast. Our explanation suggests, therefore, that the adjustment to spot irradiance blocking at the 1976 transition from RGO to SOON areas is smaller than the almost 50 % correction advocated by some recent, purely statistical, studies.  相似文献   

9.
本文用云南天文台在第22周太阳活动峰年期间拍摄到的大太阳黑子群照相资料,太阳黑子目视描述资料,以及Nimbus—7卫星上辐射计测量的太阳总辐照度,分别计算了太阳总辐射照度与大黑子群的本影视面积,大黑子群全群视面积和日面上全部黑子的总视面积的相关系数。结果表明,太阳总辐射照度与这三种视面积均存在强的负相关。其中与大黑子群本影视面积的相关最强,其次是与全群视面积的相关,最后是与日面上全部黑子的总视面积的相关。并对以上结果和其它有关结果进行了分析和讨论。  相似文献   

10.
Sunspot area measurements play an important role in the studies of sunspot groups and variations in solar irradiance. However, the measured areas may be burdened with systematic and random errors, which may affect the results in these fields. Mainly the total solar irradiance models can be improved by using more precise area data. In order to choose the most appropriate area data for a given study or create a homogeneous composite area data base, there is a need to compare the sunspot areas provided by different observatories. In this study we statistically investigated all the available corrected sunspot area data bases for the years 1986 and 1987. We find that the photographic data bases are in good agreement with each other but there are important systematic differences between the photographic and sunspot drawings data bases. We give the characteristic parameters for the systematic and random errors as well as the possible reasons for them.  相似文献   

11.
Large sunspot areas correspond to dips in the total solar irradiance (TSI), a phenomenon associated with the local suppression of convective energy transport in the spot region. This results in a strong correlation between sunspot area and TSI. During the growth phase of a sunspot other physics may affect this correlation; if the physical growth of the sunspot resulted in surface flows affecting the temperature, for example, we might expect to see an anomalous variation in TSI. In this paper we study NOAA active region 8179, in which large sunspots suddenly appeared near disk center, at a time (March 1998) when few competing sunspots or plage regions were present on the visible hemisphere. We find that the area/TSI correlation does not significantly differ from the expected pattern of correlation, a result consistent with a large thermal conductivity in solar convection zone. In addition we have searched for a smaller-scale effect by analyzing white-light images from MDI (the Michelson Doppler Imager) on SOHO. A representative upper-limit energy consistent with the images is on the order of 3×1031 ergs, assuming the time scale of the actual spot area growth. This is of the same order of magnitude as the buoyant energy of the spot emergence even if it is shallow. We suggest that detailed image analyses of sunspot growth may therefore show `transient bright rings' at a detectable level.  相似文献   

12.
本文对1980年SMM(峰年卫星)/ACRIM日射计观测的太阳常数与伴有快速变化的异常磁结构黑子群面积进行了比较分析,结果表明:当日面出现伴有快速变化的异常磁结构黑子群时,太阳常数减少。另一方面,当结构简单的“剩余”黑子群占优势时,太阳常数值轻微地增加。  相似文献   

13.
L. Gy?ri 《Solar physics》2012,280(2):365-378
Sunspot and white light facular areas are important data for solar activity and are used, for example, in the study of the evolution of sunspots and their effect on solar irradiance. Solar Dynamic Observatory??s Helioseismic and Magnetic Imager (SDO/HMI) solar images have much higher resolution (??0.5????pixel?1) than Solar and Heliospheric Observatory??s Michelson Doppler Imager (SOHO/MDI) solar images (??2????pixel?1). This difference in image resolution has a significant impact on the sunspot and white light facular areas measured in the two datasets. We compare the area of sunspots and white light faculae derived from SDO/HMI and SOHO/MDI observations. This comparison helps the calibration of the SOHO sunspot and facular area to those in SDO observations. We also find a 0.22 degree difference between the North direction in SDO/HMI and SOHO/MDI images.  相似文献   

14.
Long-lived (>20 days) sunspot groups extracted from the Greenwich Photoheliographic Results (GPR) are examined for evidence of decadal change. The problem of identifying sunspot groups that are observed on consecutive solar rotations (recurrent sunspot groups) is tackled by first constructing manually an example dataset of recurrent sunspot groups and then using machine learning to generalise this subset to the whole GPR. The resulting dataset of recurrent sunspot groups is verified against previous work by A. Maunder and other Royal Greenwich Observatory (RGO) compilers. Recurrent groups are found to exhibit a slightly larger value for the Gnevyshev?–?Waldmeier Relationship than the value found by Petrovay and van Driel-Gesztelyi (Solar Phys. 51, 25, 1977), who used recurrence data from the Debrecen Photoheliographic Results. Evidence for sunspot-group lifetime change over the previous century is observed within recurrent groups. A lifetime increase of a factor of 1.4 between 1915 and 1940 is found, which closely agrees with results from Blanter et al. (Solar Phys. 237, 329, 2006). Furthermore, this increase is found to exist over a longer period (1915 to 1950) than previously thought and provisional evidence is found for a decline between 1950 and 1965. Possible applications of machine-learning procedures to the analysis of historical sunspot observations, the determination of the magnetic topology of the solar corona and the incidence of severe space–weather events are outlined briefly.  相似文献   

15.
We examine daily records of sunspot group areas (measured in millionths of a solar hemisphere or μHem) for the last 130 years to determine the rate of decay of sunspot group areas. We exclude observations of groups when they are more than 60° in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a group’s disk passage. This leaves data for over 18 000 measurements of sunspot group decay. We find that the decay rate increases linearly from 28 μHem day−1 to about 140 μHem day−1 for groups with areas increasing from 35 μHem to 1000 μHem. The decay rate tends to level off for groups with areas larger than 1000 μHem. This behavior is very similar to the increase in the number of sunspots per group as the area of the group increases. Calculating the decay rate per individual sunspot gives a decay rate of about 3.65 μHem day−1 with little dependence upon the area of the group. This suggests that sunspots decay by a Fickian diffusion process with a diffusion coefficient of about 10 km2 s−1. Although the 18 000 decay rate measurements are lognormally distributed, this can be attributed to the lognormal distribution of sunspot group areas and the linear relationship between area and decay rate for the vast majority of groups. We find weak evidence for variations in decay rates from one solar cycle to another and for different phases of each sunspot cycle. However, the strongest evidence for variations is with latitude and the variations with cycle and phase of each cycle can be attributed to this variation. High latitude spots tend to decay faster than low latitude spots.  相似文献   

16.
A “Solar Dynamo” (SODA) Index prediction of the amplitude of Solar Cycle 25 is described. The SODA Index combines values of the solar polar magnetic field and the solar spectral irradiance at 10.7 cm to create a precursor of future solar activity. The result is an envelope of solar activity that minimizes the 11-year period of the sunspot cycle. We show that the variation in time of the SODA Index is similar to several wavelet transforms of the solar spectral irradiance at 10.7 cm. Polar field predictions for Solar Cycles 21?–?24 are used to show the success of the polar field precursor in previous sunspot cycles. Using the present value of the SODA index, we estimate that the next cycle’s smoothed peak activity will be about \(140 \pm30\) solar flux units for the 10.7 cm radio flux and a Version 2 sunspot number of \(135 \pm25\). This suggests that Solar Cycle 25 will be comparable to Solar Cycle 24. The estimated peak is expected to occur near \(2025.2 \pm1.5\) year. Because the current approach uses data prior to solar minimum, these estimates may improve as the upcoming solar minimum draws closer.  相似文献   

17.
D. H. Hathaway 《Solar physics》2013,286(2):347-356
Daily records of sunspot group areas compiled by the Royal Observatory, Greenwich, from May of 1874 through 1976 indicate a curious history for the penumbral areas of the smaller sunspot groups. On average, the ratio of penumbral area to umbral area in a sunspot group increases from 5 to 6 as the total sunspot group area increases from 100 to 2000 μHem (a μHem is 10?6 the area of a solar hemisphere). This relationship does not vary substantially with sunspot group latitude or with the phase of the sunspot cycle. However, for the sunspot groups with total areas <?100 μHem, this ratio changes dramatically and systematically through this historical record. The ratio for these smallest sunspots is near 5.5 from 1874 to 1900. After a rapid rise to more than 7 in 1905, it drops smoothly to less than 3 by 1930 and then rises smoothly back to more than 7 in 1961. It then returns to near 5.5 from 1965 to 1976. The smooth variation from 1905 to 1961 shows no indication of any step-like changes that might be attributed to changes in equipment or personnel. The overall level of solar activity was increasing monotonically during this time period when the penumbra-to-umbra area ratio dropped to less than half its peak value and then returned. If this history can be confirmed by other observations (e.g. Mt. Wilson or Kodaikanal), it may impact our understanding of penumbra formation, our dynamo models, and our estimates of historical changes in the solar irradiance.  相似文献   

18.
The areas of sunspots are the most prominent feature of the development of sunspot groups. Since the size of sunspot areas depend on the strength of the magnetic field, accurate measurements of these areas are important. In this study, a method which allows to measure true areas of the sunspots is introduced. A Stonyhurst disk is created by using a computer program and is coincided with solar images. By doing this, an accurate heliographic coordinate system is formed. Then, the true area of the whole sunspot group is calculated in square degrees with the aid of the heliographic coordinates of each picture element forming the image of the sunspot group. This technique’s use is not limited with sunspot areas only. The areas of the flare and filaments observed on the chromospheric disk can also be calculated with the same method. In addition to this, it is possible to calculate the area of any occurrence on the solar disk, whether it is related to an activity or not.  相似文献   

19.
M. A. Shea  D. F. Smart 《Solar physics》2004,224(1-2):483-493
Recent studies of the solar-terrestrial environment for the past 500 years have necessitated the use of a variety of historical databases: nitrates in ice cores, knowledge of large volcanic eruptions, sunspot numbers, mid-latitude aurora and geomagnetic records. The nitrate data are being used to identify large solar proton fluence events. The volcanic record helps to provide time markers for the ice core. The records of major geomagnetic storms and mid-latitude aurora have been used for additional identification. We also know that the Earth’s magnetic field is evolving with a present rapid decrease in magnitude. In addition the wandering magnetic pole must be considered in ascertaining what was “mid latitude” in historic times versus “mid latitude” in 2000. We illustrate how these databases are being used in recent studies of historic solar proton events.  相似文献   

20.
Sunspots have an obvious direct effect upon the visible radiant energy falling upon the Earth. We show how to estimate this effect and compare it quantitatively with recent observations of the solar total irradiance (Willson et al., 1981). The sunspots explain about half of the total observed variance of one-day averages. Since the sunspot effect on irradiance produces an asymmetry of the solar radiation, rather than (necessarily) a variation of the total luminosity, we have also estimated the sunspot population on the invisible hemisphere. This extrapolation allows us to estimate the true luminosity deficit produced by sunspots, in a manner that tends toward the correct long-term average value. We find no evidence for instantaneous global re-emission to compensate for the sunspot flux deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号