首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the kinematics of two interacting CMEs observed on 13 and 14 June 2012. The two CMEs originated from the same active region NOAA 11504. After their launches which were separated by several hours, they were observed to interact at a distance of \(100~R_{\odot}\) from the Sun. The interaction led to a moderate geomagnetic storm at the Earth with minimum \(\mathrm{D}_{\mathrm{st}}\) index of approximately ?86 nT. The kinematics of the two CMEs is estimated using data from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument onboard the Solar Terrestrial Relations Observatory (STEREO). Assuming a head-on collision scenario, we find that the collision is inelastic in nature. Further, the signatures of their interaction are examined using the in situ observations obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is also found that this interaction event led to the strongest sudden storm commencement (SSC) (\({\approx\,}150\) nT) of the present Solar Cycle 24. The SSC was of long duration, approximately 20 hours. The role of interacting CMEs in enhancing the geoeffectiveness is examined.  相似文献   

2.
In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6733 CMEs having well-measured masses against 12 050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10 – 80 minutes afterward, and we further require the flare and CME to occur within ± 45° in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log (CME mass)∝0.68×log (flare flux), and in the limit of higher flare fluxes, log (CME mass)∝0.33×log (flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log (CME mass)∝0.70×log (flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ≈ 10−7 – 10−4 W m−2.  相似文献   

3.
4.
We discuss the detection and evolution of a complex series of transient and quasi-static solar-wind structures in the days following the well-known comet 2P/Encke tail disconnection event in April 2007. The evolution of transient solar-wind structures ranging in size from <105 km to >106 km was characterised using one-minute time resolution observation of Interplanetary Scintillation (IPS) made using the European Incoherent SCATter (EISCAT) radar system. Simultaneously, the global structure and evolution of these features was characterised by the Heliospheric Imagers (HI) on the Solar TERrestrial RElations Observatory (STEREO) spacecraft, placing the IPS observations in context. Of particular interest was the observation of one transient in the slow wind, apparently being swept up and entrained by a Stream Interaction Region (SIR). The SIR itself was later detected in-situ at Venus by the Analyser of Space Plasma and Energetic Atoms (ASPERA-4) instrument on the Venus Express (VEX) spacecraft. The availability of such diverse data sources over a range of different time resolutions enables us to develop a global picture of these complex events that would not have been possible if these instruments were used in isolation. We suggest that the range of solar-wind transients discussed here may be the interplanetary counterparts of transient structures previously reported from coronagraph observations and are likely to correspond to transient magnetic structures reported in in-situ measurements in interplanetary space. The results reported here also provide the first indication of heliocentric distances at which transients become entrained.  相似文献   

5.
From the IPCC 4th Assessment Report published in 2007, ocean thermal expansion contributed by ~ 50% to the 3.1 mm/yr observed global mean sea level rise during the 1993–2003 decade, the remaining rate of rise being essentially explained by shrinking of land ice. Recently published results suggest that since about 2003, ocean thermal expansion change, based on the newly deployed Argo system, is showing a plateau while sea level is still rising, although at a reduced rate (~ 2.5 mm/yr). Using space gravimetry observations from GRACE, we show that recent years sea level rise can be mostly explained by an increase of the mass of the oceans. Estimating GRACE-based ice sheet mass balance and using published estimates for glaciers melting, we further show that ocean mass increase since 2003 results by about half from an enhanced contribution of the polar ice sheets – compared to the previous decade – and half from mountain glaciers melting. Taking also into account the small GRACE-based contribution from continental waters (< 0.2 mm/yr), we find a total ocean mass contribution of ~ 2 mm/yr over 2003–2008. Such a value represents ~ 80% of the altimetry-based rate of sea level rise over that period. We next estimate the steric sea level (i.e., ocean thermal expansion plus salinity effects) contribution from: (1) the difference between altimetry-based sea level and ocean mass change and (2) Argo data. Inferred steric sea level rate from (1) (~ 0.3 mm/yr over 2003–2008) agrees well with the Argo-based value also estimated here (0.37 mm/yr over 2004–2008). Furthermore, the sea level budget approach presented in this study allows us to constrain independent estimates of the Glacial Isostatic Adjustment (GIA) correction applied to GRACE-based ocean and ice sheet mass changes, as well as of glaciers melting. Values for the GIA correction and glacier contribution needed to close the sea level budget and explain GRACE-based mass estimates over the recent years agree well with totally independent determinations.  相似文献   

6.
7.
We present a new variable-step Gauss–Legendre implicit-Runge–Kutta-based approach for orbit and uncertainty propagation, VGL-IRK, which includes adaptive step-size error control and which collectively, rather than individually, propagates nearby sigma points or states. The performance of VGL-IRK is compared to a professional (variable-step) implementation of Dormand–Prince 8(7) (DP8) and to a fixed-step, optimally-tuned, implementation of modified Chebyshev–Picard iteration (MCPI). Both nearly-circular and highly-elliptic orbits are considered using high-fidelity gravity models and realistic integration tolerances. VGL-IRK is shown to be up to eleven times faster than DP8 and up to 45 times faster than MCPI (for the same accuracy), in a serial computing environment. Parallelization of VGL-IRK and MCPI is also discussed.  相似文献   

8.
In a previous study (Cane and Richardson, J. Geophys. Res. 108(A4), SSH6-1, 2003), we investigated the occurrence of interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002, corresponding to the increasing and maximum phases of solar cycle 23, and provided a “comprehensive” catalog of these events. In this paper, we present a revised and updated catalog of the ≈300 near-Earth ICMEs in 1996 – 2009, encompassing the complete cycle 23, and summarize their basic properties and geomagnetic effects. In particular, solar wind composition and charge state observations are now considered when identifying the ICMEs. In general, these additional data confirm the earlier identifications based predominantly on other solar wind plasma and magnetic field parameters. However, the boundaries of ICME-like plasma based on charge state/composition data may deviate significantly from those based on conventional plasma/magnetic field parameters. Furthermore, the much studied “magnetic clouds”, with flux-rope-like magnetic field configurations, may form just a substructure of the total ICME interval.  相似文献   

9.
Farrugia  C. J.  Harris  B.  Leitner  M.  Möstl  C.  Galvin  A. B.  Simunac  K. D. C.  Torbert  R. B.  Temmer  M. B.  Veronig  A. M.  Erkaev  N. V.  Szabo  A.  Ogilvie  K. W.  Luhmann  J. G.  Osherovich  V. A. 《Solar physics》2012,281(1):461-489

We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007?–?2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A. We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfvén Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind–magnetosphere interactions. We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3±0.9 mV?m?1 and a CPCP of 37.3±20.2 kV. The auroral activity is closely correlated to the prevalent stream–stream interactions. We suggest that the Alfvén wave trains in the fast streams and Kelvin–Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey. We use the same numerical approach as in Fairfield’s (J. Geophys. Res. 76, 7600, 1971) empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R E and 14.35 R E, respectively. When comparing with Fairfield’s (1971) classic result, we find that the subsolar magnetosheath is thinner by ~1 R E. This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared than in Fairfield’s model. By contrast the bow shock is less flared, and the latter is the result of weaker MHD forces.

  相似文献   

10.
The IHY Secretariat and the United Nations Basic Space Science Initiative (UNBSSI) assist scientists and engineers from all over the world in participating in the International Heliophysical Year (IHY) 2007. A major thrust of IHY/UNBSSI is to deploy arrays of small, inexpensive instruments such as magnetometers, radio telescopes, GPS receivers, all-sky cameras, etc. around the world to allow global measurements of ionospheric and heliospheric phenomena. The small instrument programme is envisioned as a partnership between instrument providers and instrument hosts in developing nations. The IHY/UNBSSI can facilitate the deployment of several of these networks world-wide. Existing data bases and relevant software tools will be identified to promote space science activities in developing nations. Extensive data on space science have been accumulated by a number of space missions. Similarly, long-term data bases are available from ground-based observations. These data can be utilized in ways different from originally intended for understanding the heliophysical processes. This paper provides a comprehensive overview of IHY/UNBSSI, its achievements, future plans, and outreach to the 192 Member States of the United Nations as recorded in the UN/NASA workshop in India.  相似文献   

11.
As the Sun was forming, calcium–aluminum-rich inclusions (CAIs) were the first rocks to have condensed in the hottest regions of the solar nebula disk. Carbonaceous chondrites (CCs) contain abundant CAIs but are thought to have accreted in the outer Solar System, requiring that CAIs must have been transported outward. Curiously, CAIs are rare in ordinary, enstatite, rumuruti, and kakangari chondrites, non-carbonaceous chondrites (NCs), that likely formed in the inner Solar System. Thus, CAI abundances and characteristics can provide constraints on the early dynamical evolution of the disk. In this work, we address whether the hypothesis of an early-formed proto-Jupiter “opening a gap” in the disk can explain the dichotomy in the relative abundance of CAIs in CC and NC chondrites. We searched 76 NC meteorite sections to find 232 CAIs which have an average apparent diameter of 46 μm and comprise 0.01 area%, about half the size of and ~200 times less abundant than CC CAIs on average. Unlike CC CAIs, only 4% of the NC CAIs contain melilite and most contain alteration features suggesting that NC CAIs underwent pervasive fluid-assisted thermal metamorphism on asteroidal parent bodies. However, based on NC CAI populations correlating with meteorite metamorphic grade, we argue that disk dynamics is likely the primary reason behind the existence of small (<100 μm) and rare NC CAIs. Our data support astrophysical models which suggest that, after outward transport of CAIs, formation of a gap in the disk trapped CAIs in the outer Solar System.  相似文献   

12.
We investigate the cosmological dynamics of a four-dimensional Friedmann–Robertson–Walker homogenous and isotropic universe from Gauss–Bonnet higher-order curvature corrections, together with nonminimal coupling and with an infrared effective action of gravity based on a second-order gauge formulation for the Lorentz group. We study the evolution of the universe in such a model, identifying its key properties. Many new interesting features are revealed and discussed in some detail.  相似文献   

13.
We compare the performance of Bayesian Belief Networks (BBN), Multilayer Perception (MLP) networks and Alternating Decision Trees (ADtree) on separating quasars from stars with the database from the 2MASS and FIRST survey catalogs. Having a train- ing sample of sources of known object types, the classifiers are trained to separate quasars from stars. By the statistical properties of the sample, the features important for classifica- tion are selected. We compare the classification results with and without feature selection. Experiments show that the results with feature selection are better than those without feature selection. From the high accuracy found, it is concluded that these automated methods are robust and effective for classifying point sources. They may all be applied to large survey projects (e.g. selecting input catalogs) and for other astronomical issues, such as the parame- ter measurement of stars and the redshift estimation of galaxies and quasars.  相似文献   

14.
An outstanding question concerning interplanetary coronal mass ejections (ICMEs) is whether all ICMEs have a magnetic flux rope structure. We test this question by studying two different ICMEs, one having a magnetic cloud (MC) showing smooth rotation of magnetic field lines and the other not. The two ICMEs are chosen in such a way that their progenitor CMEs are very similar in remote sensing observations. Both CMEs originated from close to the central meridian directly facing the Earth. Both CMEs were associated with a long-lasting post-eruption loop arcade and appeared as an elliptical halo in coronagraph images, indicating a flux rope origin. We conclude that the difference in the in-situ observation is caused by the geometric selection effect, contributed by the deflection of flux ropes in the inner corona and interplanetary space. The first event had its nose pass through the observing spacecraft; thus, the intrinsic flux rope structure of the CME appeared as a magnetic cloud. On the other hand, the second event had the flank of the flux rope intercept the spacecraft, and it thus did not appear as a magnetic cloud. We further argue that a conspicuous long period of weak magnetic field, low plasma temperature, and density in the second event should correspond to the extended leg portion of the embedded magnetic flux rope, thus validating the scenario of the flank-passing. These observations support the idea that all CMEs arriving at the Earth include flux rope drivers.  相似文献   

15.
C. Beck 《Solar physics》2010,264(1):57-70
I report observations of unusually strong photospheric and chromospheric velocity oscillations in and near the leading sunspot of NOAA 10781 on 3 July 2005. I investigate an impinging wave as a possible origin of the velocity pattern and the changes of the wave after the passage through the magnetic fields of the sunspot.  相似文献   

16.
17.
We describe a newly developed hydrodynamic code for studying accretion disk processes. The numerical method uses a finite volume, non-linear, Total Variation Diminishing (TVD) scheme to capture shocks and control spurious oscillations. It is second-order accurate in time and space and makes use of a FARGO-type algorithm to alleviate Courant–Friedrichs–Lewy time step restrictions imposed by the rapidly rotating inner disk region. OpenMP directives are implemented enabling faster computations on shared-memory, multi-processor machines. The resulting code is simple, fast and memory efficient. We discuss the relevant details of the numerical method and provide results of the code’s performance on standard test problems. We also include a detailed examination of the code’s performance on planetary disk–planet interactions. We show that the results produced on the standard problem setup are consistent with a wide variety of other codes.  相似文献   

18.
Multiple observations made by several different telescopes have shown asymmetry between the number of spiral galaxies rotating in opposite directions in different parts of the sky. One of the immediate questions regarding the possible asymmetry of the spin directions is whether the distribution forms a cosmological-scale axis. This paper analyzes and compares 10 different datasets published in the past decade, collected by SDSS, Pan-STARRS, and Hubble Space Telescope. The datasets contain spiral galaxies separated by their spin direction, and the distribution can show dipole axes. The analysis shows that the directions of the most probable dipole axes are consistent in datasets that have similar average redshift, but different between datasets that have different average redshift. The analysis also shows that the location of the most probable axis correlates with the average redshift of the galaxies in the datasets. That is, the location of the most probable axis shifts when the redshift gets higher, and the correlation is statistically significant. This provides a certain indication of a drift in a possible axis formed by the distribution of galaxy spin directions, or a cosmological scale structure that peaks at a certain distance from Earth.  相似文献   

19.
Hubble Space Telescope/Wide Field and Planetary Camera 2 (HST/WFPC2) images of Io obtained between 1995 and 2007 between 0.24 and 0.42 μm led to the detection of the Pele plume in reflected sunlight in 1995 and 1999; imaging of the Pele plume via absorption of jovian light in 1996 and 1999; detection of the Prometheus-type Pillan plume in reflected sunlight in 1997; and detection of the 2007 Pele-type Tvashtar plume eruption in reflected sunlight and via absorption of jovian light. Based on a detailed analysis of these observations we characterize and compare the gas and dust properties of each of the detected plumes. In each case, the brightness of the plumes in reflected sunlight is less at 0.26 μm than at 0.33 μm. Mie scattering analysis of the wavelength dependence of each plume’s reflectance signature suggests that range of particle sizes within the plumes is quite narrow. Assuming a normal distribution of particle sizes, the range of mean particle sizes is ~0.035–0.12 μm for the 1997 Pillan eruption, ~0.05–0.08 μm for the 1999 Pele and 2007 Tvasthar plumes, and ~0.05–0.11 μm for the 1995 Pele plume, and in each case the standard deviation in the particle size distribution is <15%. The Mie analysis also suggests that the 2007 Tvashtar eruption released ~109 g of sulfur dust, the 1999 Pele eruption released ~109 g of SO2 dust, the 1997 Pillan eruption released ~1010 g of SO2 dust, and the 1995 Pele plume may have released ~1010 g of SO2 dust. Analysis of the plume absorption signatures recorded in the F255W filter bandpass (0.24–0.28 μm) indicates that the opacity of the 2007 Tvashtar plume was 2× that of the 1996 and 1999 Pele plume eruptions. While the sulfur dust density estimated for the Tvashtar from the reflected sunlight data could have produced 61% of the observed plume opacity, <10% of the 1999 Pele F255W plume opacity could have resulted from the SO2 dust detected in the eruption. Accounting for the remaining F255W opacity level of the Pele and Tvasthar plumes based on SO2 and S2 gas absorption, the SO2 and S2 gas density inferred for each plume is almost equivalent corresponding to ~2–6 × 1016 cm?2 and 3–5 × 1015 cm?2, respectively, producing SO2 and S2 gas resurfacing rates ~0.04–0.2 cm yr?1 and 0.007–0.01 cm yr?1; and SO2 and S2 gas masses ~1–4 × 1010 g and ~2–3 × 109 g; for a total dust to gas ratio in the plumes ~10?1–10?2. The 2007 Tvashtar plume was detected by HST at ~380 ± 40 km in both reflected sunlight and absorbed jovian light; in 1999, the detected Pele plume altitude was 500 km in absorbed jovian light, but in reflected sunlight the detected height was ~2× lower. Thus, for the 1999 Pele plume, similar to the 1979 Voyager Pele plume observations, the most efficient dust reflections occurred in the region closest to the plume vent. The 0.33–0.42 μm brightness of the 1997 Pillan plume was 10–20× greater than the Pele or Tvashtar plumes, exceeding by a factor of 3 the average brightness levels observed within 200 km of 1979 Loki eruption vent. But, the 0.26 μm brightness of the 1997 Pillan plume in reflected sunlight was significantly lower than would be predicted by the dust scattering model. Presuming that the 0.26 μm brightness of the 1997 Pillan plume was attenuated by the eruption plume’s gas component, then an SO2 gas density ~3–6 × 1018 cm?2 is inferred from the data (for S2/SO2 ratios ?4%), comparable to the 0.3–2 × 1018 cm?2 SO2 density detected at Loki in 1979 (Pearl, J.C. et al. [1979]. Nature 280, 755; Lellouch et al., 1992), and producing an SO2 gas mass ~3–8 × 1011 g and an SO2 resurfacing rate ~8–23 cm yr?1. These results confirm the connection between high (?1017 cm?2) SO2 gas content and plumes that scatter strongly at nearly blue wavelengths, and it validates the occurrence of high density SO2 gas eruptions on Io. Noting that the SO2 gas content inferred from a spectrum of the 2003 Pillan plume was significantly lower ~2 × 1016 cm?2 (Jessup, K.L., Spencer, J., Yelle, R. [2007]. Icarus 192, 24–40); and that the Pillan caldera was flooded with fresh SO2 frost/slush just prior to the 1997 Pillan plume eruption (Geissler, P., McEwen, A., Phillips, C., Keszthelyi, L., Spencer, J. [2004a]. Icarus 169, 29–64; Phillips, C.B. [2000]. Voyager and Galileo SSI Views of Volcanic Resurfacing on Io and the Search for Geologic Activity at Europa. Ph.D. Thesis, Univ. of Ariz., Tucson); we propose that the density of SO2 gas released by this volcano is directly linked to the local SO2 frost abundance at the time of eruption.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号