首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The paper considers wave transformation in the vicinity of the cusp resonance in an isothermic finite conductivity medium with a nearly horizontal magnetic field. It is shown that absorption of magnetogravity waves takes place when the inclination angle of the magnetic field is smaller than the critical angle. When the inclination angle is large then the critical magnetogravity waves are transformed into slow magnetoacoustic waves.  相似文献   

2.
We explore the conditions for resonance between cometary pick-up ions and parallel propagating electromagnetic waves. A model ring—beam distribution for the pick-up H2O+ ions is adopted which allows a direct comparison of the source of free energy for growth from either the beam or the gyrating ring in the limit near marginal stability. Under average solar wind conditions in the inner solar system, the gyrating ring provides the dominant contribution to wave growth. The presence of a field-aligned beam is only important to allow resonance with R-mode waves which occur in two distinct frequency bands either well above or below the pick-up ion gyrofrequency. The most unstable mode is the low frequency R-mode or fast MHD wave, though higher frequency whistlers or low frequency L-mode waves may also be excited by the same source of free energy. The nature of the unstable waves is strongly influenced by the inclination of the interplanetary field. For 3° the rate of the low frequency R-mode growth is dramatically reduced and resonant L-mode waves should experience net ion beam damping. Conversely for 75°, the ion beam velocity will be insufficient to allow resonant R-mode instability; L-mode waves should therefore predominate. The low frequency fast MHD mode should experience the most rapid amplification for intermediate inclination; 30° 75°. In the frame of the solar wind such waves must propagate along the field in the direction upstream towards the Sun with a phase speed lower than the beaming velocity of the pick-up ions. The waves are consequently blown back away from the Sun and would thus be detected with a left-hand polarization by an observer in the cometary frame. We consider this the most likely mechanism to account for the interior MHD waves observed by satellites over an extended spatial region surrounding comets Giacobini-Zinner and Halley.  相似文献   

3.
V. I. Zhukov 《Solar physics》1992,138(1):201-203
The properties of the resonator are considered for fast magnetoacoustic waves. It is shown that tunnel penetration of waves from the resonator leads either to heating of the medium in the Alfvén resonance vicinity (if the inclination angle of the magnetic field is smaller than the critical angle), or to excitation of Alfvén waves at the Alfvén resonance (if the inclination angle is larger than the critical angle). This suggests that non-radiative heating of the corona can be due to solar p-mode oscillations.  相似文献   

4.
Time-Distance ‘travel time’ perturbations (as inferred from wave phase) are calculated relative to the quiet-Sun as a function of wave orientation and field inclination in a uniform inclined magnetic field. Modelling indicates that the chromosphere-corona Transition Region (TR) profoundly alters travel times at inclinations from the vertical θ for which the ramp-reduced acoustic cutoff frequency ω c cosθ is similar to the wave frequency ω. At smaller inclinations phase shifts are much smaller as the waves are largely reflected before reaching the TR. At larger inclinations, the shifts resume their quiet-Sun values, although with some resonant oscillatory behaviour. Changing the height of the TR in the model atmosphere has some effect, but the thickness and temperature jump do not change the results substantially. There is a strong correspondence between travel-time shifts and the Alfvén flux that emerges at the top of the modelled region as a result of fast/Alfvén mode conversion. We confirm that the TR transmission coefficient for Alfvén waves generated by mode conversion in the chromosphere is far larger (typically 30 % or more) than for Alfvén waves injected from the photosphere.  相似文献   

5.
Resonant absorption of fast magnetoacoustic (FMA) waves in an inhomogeneous, weakly dissipative, one-dimensional planar, strongly anisotropic and dispersive plasma is investigated. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the inhomogeneous slab interacting with the localised slow or Alfvén waves present in the inhomogeneous layer and are partly reflected, dissipated and transmitted by this region. The presented research aims to find the coefficient of wave energy absorption under solar chromospheric and coronal conditions. Numerical results are analysed to find the coefficient of wave energy absorption at both the slow and Alfvén resonance positions. The mathematical derivations are based on the two simplifying assumptions that i) nonlinearity is weak, and ii) the thickness of the inhomogeneous layer is small in comparison to the wavelength of the wave, i.e. we employ the so-called long wavelength approximation. Slow resonance is found to be described by the nonlinear theory, while the dynamics at the Alvén resonance can be described within the linear framework. We introduce a new concept of coupled resonances, which occurs when two different resonances are in close proximity to each other, causing the incoming wave to act as though it has been influenced by the two resonances simultaneously. Our results show that the wave energy absorption is heavily dependent on the angle of the incident wave in combination with the inclination angle of the equilibrium magnetic field. In addition, it is found that FMA waves are very efficiently absorbed at the Alvén resonance under coronal conditions. Under chromospheric conditions the FMA waves are far less efficiently absorbed, despite an increase in efficiency due to the coupled resonances.  相似文献   

6.
We study properties of waves of frequencies above the photospheric acoustic cut-off of ≈5.3 mHz, around four active regions, through spatial maps of their power estimated using data from the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The wavelength channels 1600 Å and 1700 Å from AIA are now known to capture clear oscillation signals due to helioseismic p-modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so-called “acoustic halos” seen around active regions, as a function of wave frequencies, inclination, and strength of magnetic field (derived from the vector-field observations by HMI), and observation height. We infer possible signatures of (magneto)acoustic wave refraction from the observation-height-dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p-mode absorption and mode conversions by the magnetic field.  相似文献   

7.
The nature of magnetoacoustic surface waves at a single magnetic interface, one side of which is field-free, is explored for the case of parallel propagation. The interface may support a slow surface wave or both slow and fast surface waves, depending upon the ordering of the sound speeds in the two media. Phase-speeds and penetration depths of the waves and the associated pressure perturbations and motions are investigated for a variety of field strengths and sound speeds. The fast wave disturbs the interface more than the slow wave. In the magnetic field region the slow wave is mainly longitudinal in nature whilst the fast surface wave is transverse for strong fields, longitudinal for weaker fields. In the field-free region both waves are longitudinal in character. The running penumbral wave phenomenon may provide an example of a magnetoacoustic surface mode, though any direct comparison requires the inclusion of gravitational effects.  相似文献   

8.
9.
In a binary system of a background fluid-wave field, the wave effect may be important in some cases. From general properties of thermodynamics of the medium, we derive the coupling equations for the mean flow-wave field. For six wave modes (Langmuir wave, ion-acoustic oscillations, whistlers, Alfvén waves, magneto-acoustic oscillations, and transverse plasma wave) the corresponding representation of the wave stress tensor is found. Finally, the representation for the Alfvén waves is applied to the faculae heating and a result consistent with observations is obtained.  相似文献   

10.
The paper considers wave transformation in the vicinity of the Alfvén resonance in a finite conductivity medium with a magnetic field, the inclination angle of which is close to the critical.  相似文献   

11.
We numerically investigate Alfvén waves propagating along an axisymmetric and non-isothermal solar flux tube embedded in the solar atmosphere. The tube magnetic field is current-free and diverges with height, and the waves are excited by a periodic driver along the tube magnetic field lines. The main results are that the two wave variables, the velocity and magnetic field perturbations in the azimuthal direction, behave differently as a result of gradients of the physical parameters along the tube. To explain these differences in the wave behavior, the time evolution of the wave variables and the resulting cutoff period for each wave variable are calculated and used to determine regions in the solar chromosphere where strong wave reflection may occur.  相似文献   

12.
We consider a pressureless plasma in a thin magnetic-flux tube with a twisted magnetic field. We study the effect of twisted magnetic field on the nature of propagating kink waves. To do this, the restoring forces of oscillations in the linear ideal magnetohydrodynamics (MHD) were obtained. In the presence of a twisted magnetic field, the ratio of the magnetic-tension force to the gradient of the magnetic pressure increases for the mode with negative azimuthal wave number, but it decreases for the mode with positive azimuthal wave number. For the kink mode with positive azimuthal mode number, the ratio of the forces is more affected by the twisted magnetic field in dense loops. For the kink mode with negative azimuthal mode number, the perturbed magnetic pressure is negligible under some conditions. The magnetic twist increases (diminishes) the damping of the kink waves with positive (negative) azimuthal mode number due to resonant absorption. Our conclusion is that introducing a twisted magnetic field breaks the symmetry between the nature of the kink waves with positive and negative azimuthal wave number, and the wave can be a purely Alfvénic wave in the entire loop.  相似文献   

13.
An analysis of magneto-acoustic-gravity waves in the case of an isothermal atmosphere permeated by a uniform magnetic field is presented. The general solution is expressed in terms of generalized hypergeometric functions. It can be used in numerical simulation of oscillations in a magnetic atmosphere.

It is shown that the elliptically polarized magneto-acoustic-gravity waves consist of a pair of surface waves and a pair of body waves above the cut-off frequency. The body waves along the magnetic field are similar to acoustic waves in an atmosphere and their cut-off frequency is unaffected by magnetic field. The transverse oscillation decreases with height. For the usual boundary condition, the longitudinal oscillation decreases with height; however, in some cases, it may contain terms that increase with height. The solution is singular on a family of ellipses in the frequency - horizontal wave number plane. Near these ellipses, the wave components grow indefinitely.  相似文献   


14.
The propagation of weak waves has been studied by taking into account the influence of thermal radiative field. The singular surface theory is used to determine the modes of wave propagation and to evaluate the behaviour at the wave head. The effects of thermal radiation, conduction and the initial wave front curvature on the nonlinear breaking of weak waves are discussed. It is concluded that, under the thermal radiation effects, the shock wave formation is either disallowed or delayed. On the other hand, the thermal conduction effects destabilize the waves.  相似文献   

15.
本文对充满垂直均匀磁场的等温大气内的磁声重力波做了严格的解析分析,并将其通解表述成广义超几何函数的形式。该解可用于对磁大气内振荡现象的进一步数值模拟研究。对解的分析澄清了若干磁声重力波的传播性质。  相似文献   

16.
At the surface of the Sun, acoustic waves appear to be affected by the presence of strong magnetic fields in active regions. We explore the possibility that the inclined magnetic field in sunspot penumbrae may convert primarily vertically-propagating acoustic waves into elliptical motion. We use helioseismic holography to measure the modulus and phase of the correlation between incoming acoustic waves and the local surface motion within two sunspots. These correlations are modeled by assuming the surface motion to be elliptical, and we explore the properties of the elliptical motion on the magnetic-field inclination. We also demonstrate that the phase shift of the outward-propagating waves is opposite to the phase shift of the inward-propagating waves in stronger, more vertical fields, but similar to the inward phase shifts in weaker, more-inclined fields.  相似文献   

17.
A general scheme is established to examine any magnetohydrodynamic (MHD) configuration for its acceleration potential including the effects of various types of plasma waves. The analysis is restricted to plasma waves in a magnetic field with electron cyclotron frequency less than, but comparable to, the electron plasma frequency (moderate field). The general role of electron plasma waves is examined in this paper independent of a specific MHD configuration or generating mechanism in the weak turbulence limit. The evolution of arbitrary wave spectra in a non-relativistic plasma is examined, and it is shown that the nonlinear, process of induced scattering on the polarization clouds of ions leads to the collapse of the waves to an almost one-dimensional spectrum directed along the magnetic field. The subsequent acceleration of non-relativistic and relativistic particles is considered. It is shown for non-relativistic particles that when the wave distribution has a negative slope the acceleration is retarded for lower velocities and enhanced for higher velocities compared to acceleration by an isotropic distribution of electron plasma waves in a magnetic field. This change in behavior is expected to affect the development of wave spectra and the subsequent acceleration spectrum.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
The paper examines the evolutionary behaviour of acceleration waves in a perfectly conducting inviscid radiating gas permeated by a transverse magnetic field. Solution of the problem in the characteristic plane has been determined. It is shown that a linear solution in the characteristic plane exhibits nonlinear behaviour in the physical plane. Transport equation governing the behaviour of acceleration waves has been derived. The effect of radiative heat transfer under the influence of magnetic field on the formation of shock wave with generalized geometry is analyzed. The critical amplitude of the initial disturbance has been obtained such that the initial amplitude of any compressive wave greater than the critical one always terminates into shock wave. Critical time, when the compressive wave will grow into a shock wave, has been determined. Also, it is assessed as to how the radiative heat transfer in the presence of magnetic field affects the shock formation.  相似文献   

19.
Ming Xiong  Xing Li 《Solar physics》2012,279(1):231-251
Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave–particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfvén waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. In this paper, we assume that i) low-frequency Alfvén and fast waves, emanating from the solar surface, have the same spectral shape and the same amplitude of power spectral density (PSD); ii) these waves eventually reach ion cyclotron frequencies due to a turbulence cascade; iii) kinetic wave–particle interaction powers the solar wind. The existence of alpha particles in a dominant proton/electron plasma can trigger linear mode conversion between oblique fast-whistler and hybrid alpha–proton cyclotron waves. The fast-cyclotron waves undergo both alpha and proton cyclotron resonances. The alpha cyclotron resonance in fast-cyclotron waves is much stronger than that in Alfvén-cyclotron waves. For alpha cyclotron resonance, an oblique fast-cyclotron wave has a larger left-handed electric field fluctuation, a smaller wave number, a larger local wave amplitude, and a greater energization capability than a corresponding Alfvén-cyclotron wave at the same wave propagation angle θ, particularly at 80°<θ<90°. When Alfvén-cyclotron or fast-cyclotron waves are present, alpha particles are the chief energy recipient. The transition of preferential energization from alpha particles to protons may be self-modulated by a differential speed and a temperature anisotropy of alpha particles via the self-consistently evolving wave–particle interaction. Therefore, fast-cyclotron waves, as a result of linear mode coupling, constitute a potentially important mechanism for preferential energization of minor ions in the main acceleration region of the solar wind.  相似文献   

20.
Hydromagnetic waves are of interest for heating the corona or coronal loops and for accelerating the solar wind. This paper enumerates some of the limitations that must be considered before hydromagnetic waves are taken seriously. In the lowest part of the corona, waves interact so that a significant fraction of the coronal wave flux should have periods as 10 s. If the problem of interest determines either a flux of wave energy or a dissipation rate, the distance that each wave mode can travel can be specified, and for at least one mode it must be consistent with the size and location of the region where the waves are to act. Heating of coronal loops observed by X-rays can be explained if the strength of the magnetic field along the loop lies within a rather narrow range and if the wave period is sufficiently short. In general, Alfvén waves travel furthest and reach high into the corona and into the solar wind. The radial variation of the magnetic field is the most important parameter determining where the waves are dissipated. Heating of coronal helmets by Alfvén waves is probable.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号