首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strongest observed solar magnetic fields are found in sunspot umbrae and associated light bridges. We investigate systematic measurements of approximately 32 000 sunspot groups observed from 1917 through 2004 using data from Mt. Wilson, Potsdam, Rome and Crimea observatories. Isolated observations from other observatories are also included. Corrections to Mt. Wilson measurements are required and applied. We found 55 groups (0.2%) with at least one sunspot with one magnetic field measurement of at least 4000 G including five measurements of at least 5000 G and one spot with a record field of 6100 G. Although typical strong-field spots are large and show complex structure in white light, others are simple in form. Sometimes the strongest fields are in light bridges that separate opposite polarity umbras. The distribution of strongest measured fields above 3 kG appears to be continuous, following a steep power law with exponent about −9.5. The observed upper limit of 5 – 6 kG is consistent with the idea that an umbral field has a more or less coherent structure down to some depth and then fragments. We find that odd-numbered sunspot cycles usually contain about 30% more total sunspot groups but 60% fewer >3 kG spots than preceding even-numbered cycles.  相似文献   

2.
We applied automatic identification of sunspot umbrae and penumbrae to daily observations from the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to study their magnetic flux density (B) and area (A). The results confirm an already known logarithmic relationship between the area of sunspots and their maximum flux density. In addition, we find that the relation between average magnetic flux density ( $B_{\rm avg}$ ) and sunspot area shows a bimodal distribution: for small sunspots and pores (A≤20 millionth of solar hemisphere, MSH), $B_{\rm avg} \approx 800~\mbox{G}$ (gauss), and for large sunspots (A≥100 MSH), $B_{\rm avg}$ is about 600 G. For intermediate sunspots, average flux density linearly decreases from about 800 G to 600 G. A similar bimodal distribution was found in several other integral parameters of sunspots. We show that this bimodality can be related to different stages of sunspot penumbra formation and can be explained by the difference in average inclination of magnetic fields at the periphery of small and large sunspots.  相似文献   

3.
1994年1月5日日面上产生的1次1N/M1.0耀斑爆发,射电1.42GHz高时间分辨率观测也同时接收到,在小爆发过程里伴有53个脉冲信号叠加在连续辐射背景上,是很罕见的现象。在AR7646的黑子前导区域,5日有2处新浮的小黑子对,磁场分别成细小磁流管平行和交又状态,是产生爆发的根源;脉冲信号是微耀斑在射电方面的瞬时辐射现象,由耀斑连续产生微能量释放而出现,单个的能量释放为(0.3—3.3)×1010焦耳。在能量释放过程里,非热电子加速起到重要作用。  相似文献   

4.
Raju  K.P.  Singh  Jagdev 《Solar physics》2002,207(1):11-16
In an earlier paper by Raju, Srikanth, and Singh (1998), the average size of chromospheric network cells has been shown to have a dependence on the solar latitude. This was presumed to be due to the reduction of supergranular length-scales by network magnetic field enhancements. It has been found that the network brightness enhancements over solar latitude support this finding. Significant negative correlations have been found between the average cell size and the network brightness enhancements. Since the brightness enhancements are essentially due to the magnetic field concentrations, it is suggested that the network magnetic fields reduce the network cell sizes. We have also obtained the variations of skewness of network brightness distributions over solar latitude, which follow the network field variations. This complements the findings of Caccin et al. (1998) that skewness of brightness distribution follows the solar cycle. The findings suggest that the dependence of supergranular sizes, network brightness, and skewness of network brightness distribution on solar latitude or on the phase of the solar cycle is due to the associated variation of network magnetic fields.  相似文献   

5.
High-resolution MDI magnetograms are used to study the pattern of moving magnetic inhomogeneities in sunspots. We examine the inward and outward moving features in sunspots. The velocity of these features is small in the umbra while it is about 0.5 km s–1 in the outer penumbra. The inward and outward moving features may be the possible origin for the long-term fluctuations of magnetic field strength in sunspots.  相似文献   

6.
In this paper we analyse the integrability of a dynamical system describing the rotational motion of a rigid satellite under the influence of gravitational and magnetic fields. In our investigations we apply an extension of the Ziglin theory developed by Morales-Ruiz and Ramis. We prove that for a symmetric satellite the system does not admit an additional real meromorphic first integral except for one case when the value of the induced magnetic moment along the symmetry axis is related to the principal moments of inertia in a special way.  相似文献   

7.
8.
9.
本文把我们在文[1]和[2]中建立的诊断方法,应用于美国高山天文台斯托克斯参量仪对1978年12月11日太阳黑子本影和半影取得的Q和U两个参数的轮廓,发现这个黑子的磁力线不呈现较强的扭绞。  相似文献   

10.
Interstellar magnetic fields are strong: up to 25μG in spiralarms and 40μG in nuclear regions.In the spiral galaxy NGC 6946 the average magnetic energy densityexceeds that of the thermal gas. Magnetic fields control the evolution of denseclouds and possibly the global star formation efficiency in galaxies.Gas flows and shocks in spiral arms and bars are modified by magneticfields. Magnetic forces instar-forming circumnuclear regions are able to drive mass inflow towardsthe active nucleus. Magnetic fields are essential for the propagationof cosmic rays and the formation of galactic winds and halos.  相似文献   

11.
Rušin  V.  Rybansky  M. 《Solar physics》2002,207(1):47-61
We present results of a study of the green corona (530.3 nm, Fexiv) and photospheric magnetic fields over the period 1976–1999 when both quantities were observed by ground-based observatories. By comparing both the limb green-line intensities and photospheric magnetograms we have found a relation between the strength of magnetic field and coronal intensities. This relation enables us to extend solar surface magnetic fields since 1976 back to 1939. From 1947 to 1992 the magnetic field strength grew at the cycle maxima by a factor of 1.5–2. On the other hand, both the green corona intensity and magnetic field strength in the present cycle are smaller compared to cycle 22, by a factor of 2. No relationship was found between the green corona intensities and magnetic field polarity as was previously supposed. Behavior for the green corona intensities is different between high-latitude and mid-latitude regions, and this break occurs at the heliographic latitude of ± 45°. Homogeneous coronal data set cannot be directly used to derive `the tilt angle', even though some similarities between the green coronal holes, poleward branches in the green corona and prominences and the tilt angle can be found.  相似文献   

12.
13.
AR8 2 1 0活动区的黑子磁场结构是反极性排列 ,开始是负极性的主黑子上半部被正极性所包围 ,随后又在主黑子下方浮现正极磁场 ,引起主黑子作顺时针方向旋转约 90°,当正极性磁场强度减弱后 ,主黑子又呈弱的逆时针方向旋转。该区域产生的高能耀斑爆发与黑子磁场变化密切联系。  相似文献   

14.
The Mechanism involved in the Reversals of the Sun's Polar Magnetic Fields   总被引:2,自引:0,他引:2  
Durrant  C.J.  Turner  J.P.R.  Wilson  P.R. 《Solar physics》2004,222(2):345-362
Models of the polarity reversals of the Sun's polar magnetic fields based on the surface transport of flux are discussed and are tested using observations of the polar fields during Cycle 23 obtained by the National Solar Observatory at Kitt Peak. We have extended earlier measurements of the net radial flux polewards of ±60° and confirm that, despite fluctuations of 20%, there is a steady decline in the old polarity polar flux which begins shortly after sunspot minimum (although not at the same time in each hemisphere), crosses the zero level near sunspot maximum, and increases, with reversed polarity during the remainder of the cycle. We have also measured the net transport of the radial field by both meridional flow and diffusion across several latitude zones at various phases of the Cycle. We can confirm that there was a net transport of leader flux across the solar equator during Cycle 23 and have used statistical tests to show that it began during the rising phase of this cycle rather than after sunspot maximum. This may explain the early decrease of the mean polar flux after sunspot minimum. We also found an outward flow of net flux across latitudes ±60° which is consistent with the onset of the decline of the old polarity flux. Thus the polar polarity reversals during Cycle 23 are not inconsistent with the surface flux-transport models but the large empirical values required for the magnetic diffusivity require further investigation.  相似文献   

15.
We present the results of X-ray luminosities of some active late-type stars, based on data primarily from the ROSAT position sensitive proportional counter (PSPC). According to the observations, we divide the stars into four groups: single, wide binary, binary and RS CVn. We investigated the correlation between the X-ray emission and the hardness ratio, coronal temperature, magnetic field strength, magnetic flux density. Our results suggest that the magnetic field plays a very important role in stellar X-ray emission.  相似文献   

16.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   

17.
1 IntroductionTheeffectsoflarge scalemagneticfieldsontheexcitationandevolutionofmagnetoacousticwavesinspiralgalaxieshavebeenstudiedbymanyauthors (Lynden Bell 1 96 6 ;Nelson 1 988;BalbusandHawley 1 991 ;Battaner 1 993;Vallee 1 994) .Morerecently ,ShuandLi ( 1 997)de rivedamodifi…  相似文献   

18.
A comparative analysis of solar and heliospheric magnetic fields in terms of their cumulative sums reveals cyclic and long-term changes that appear as a magnetic flux imbalance and alternations of dominant magnetic polarities. The global magnetic flux imbalance of the Sun manifests itself in the solar mean magnetic field (SMMF) signal. The north – south asymmetry of solar activity and the quadrupole mode of the solar magnetic field contribute the most to the observed magnetic flux imbalance. The polarity asymmetry exhibits the Hale magnetic cycle in both the radial and azimuthal components of the interplanetary magnetic field (IMF). Analysis of the cumulative sums of the IMF components clearly reveals cyclic changes in the IMF geometry. The accumulated deviations in the IMF spiral angle from its nominal value also demonstrate long-term changes resulting from a slow increase of the solar wind speed over 1965 – 2006. A predominance of the positive IMF B z with a significant linear trend in its cumulative signal is interpreted as a manifestation of the relic magnetic field of the Sun. Long-term changes in the IMF B z are revealed. They demonstrate decadal changes owing to the 11/22-year solar cycle. Long-duration time intervals with a dominant negative B z component were found in temporal patterns of the cumulative sum of the IMF B z .  相似文献   

19.
This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes of neutron stars. The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars.  相似文献   

20.
Beskin  V. S.  Zagorulia  D. S.  Istomin  A. Yu. 《Astronomy Letters》2021,47(10):686-694
Astronomy Letters - The birth function of neutron stars in magnetic field $$B$$ is estimated for two models of the evolution of radio pulsars corresponding to different directions of evolution of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号