首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Located at the end of the northern Manila Trench,the Hengchun Peninsula is the latest exposed part of Taiwan Island,and preserves a complete sequence of accretionary deep-sea turbidite sandstones.Combined with extensive field observations,a’source-to-sink’approach was employed to systematically analyze the formation and evolutionary process of the accretionary prism turbidites on the Hengchun Peninsula.Lying at the base of the Hengchun turbidites are abundant mafic normal oceanic crust gravels with a certain degree of roundness.The gravels with U-Pb ages ranging from 25.4 to23.6 Ma are underlain by hundreds-of-meters thickness of younger deep-sea sandstone turbidites with interbedded gravels.This indicates that large amounts of terrigenous materials from both the’Kontum-Ying-Qiong’River of Indochina and the Pearl River of South China were transported into the deep-water areas of the northern South China Sea during the late Miocene and further eastward in the form of turbidity currents.The turbidity flow drastically eroded and snatched mafic materials from the normal South China Sea oceanic crust along the way,and subsequently unloaded large bodies of basic gravel-bearing sandstones to form turbidites near the northern Manila Trench.With the Philippine Sea Plate drifting clockwise to the northwest,these turbidite successions eventually migrated and,since the Middle Pleistocene,were exposed as an accretionary prism on the Hengchun Peninsula.  相似文献   

2.
On the basis of detailed sedimentological investigation, three types of hybrid event beds (HEBs) together with debrites and turbidites were distinguished in the Lower Cretaceous sedimentary sequence on the Lingshan Island in the Yellow Sea, China. HEB 1, with a total thickness of 63–80 cm and internal bipartite structures, is characterised by a basal massive sandstone sharply overlain by a muddy sandstone interval. It is interpreted to have been formed by particle rearrangement at the base of cohesive debris flows. HEB 2, with a total thickness of 10–71 cm and an internal tripartite structure, is characterised by a normal grading sandstone base, followed by muddy siltstone middle unit and capped with siltstones; the top unit of HEB 2 may in places be partly or completely eroded. The boundary between the lowest unit and the middle unit is gradual, whereas that between the middle unit and the top unit is sharp. HEB 2 may be developed by up-dip muddy substrate erosion. HEB 3, with a total thickness up to 10 cm and an internal bipartite structure, is characterised by a basal massive sandstone sharply overlain by a muddy siltstone interval. The upper unit was probably deposited by cohesive debris flow with some plant fragments and rare mud clasts. HEB 3 may be formed by the deceleration of low-density turbidity currents. The distribution of HEBs together with debrites and turbidites implies a continuous evolution process of sediment gravity flows: debris flow → hybrid flow caused by particle rearrangement → high-density turbidity current → hybrid flow caused by muddy substrate erosion → low-density turbidity current → hybrid flow caused by deceleration.  相似文献   

3.
The canyon mouth is an important component of submarine‐fan systems and is thought to play a significant role in the transformation of turbidity currents. However, the depositional and erosional structures that characterize canyon mouths have received less attention than other components of submarine‐fan systems. This study investigates the facies organization and geometry of turbidites that are interpreted to have developed at a canyon mouth in the early Pleistocene Kazusa forearc basin on the Boso Peninsula, Japan. The canyon‐mouth deposits have the following distinctive features: (i) The turbidite succession is thinner than both the canyon‐fill and submarine‐fan successions and is represented by amalgamation of sandstones and pebbly sandstones as a result of bypassing of turbidity currents. (ii) Sandstone beds and bedsets show an overall lenticular geometry and are commonly overlain by mud drapes, which are massive and contain fewer bioturbation structures than do the hemipelagic muddy deposits. (iii) The mud drapes have a microstructure characterized by aggregates of clay particles, which show features similar to those of fluid‐mud deposits, and are interpreted to represent deposition from fluid mud developed from turbidity current clouds. (iv) Large‐scale erosional surfaces are infilled with thick‐bedded to very thick‐bedded turbidites, which show lithofacies quite similar to those of the surrounding deposits, and are considered to be equivalent to scours. (v) Concave‐up erosional surfaces, some of which face in the upslope direction, are overlain by backset bedding, which is associated with many mud clasts. (vi) Tractional structures, some of which are equivalent to coarse‐grained sediment waves, were also developed, and were overlain locally by mud drapes, in association with mud drape‐filled scours, cut and fill structures and backset bedding. The combination of these outcrop‐scale erosional and depositional structures, together with the microstructure of the mud drapes, can be used to identify canyon‐mouth deposits in ancient deep‐water successions.  相似文献   

4.
The late Pleistocene and Holocene stratigraphy of Navy Fan is mapped in detail from more than 100 cores. Thirteen 14C dates of plant detritus and of organic-rich mud beds show that a marked change in sediment supply from sandy to muddy turbidites occurred between 9000 and 12,000 years ago. They also confirm the correlation of several individual depositional units. The sediment dispersal pattern is primarily controlled by basin configuration and fan morphology, particularly the geometry of distributary channels, which show abrupt 60° bends related to the Pleistocene history of lobe progradation. The Holocene turbidity currents are depositing on, and modifying only slightly, a relict Pleistocene morphology. The uppermost turbidite is a thin sand to mud bed on the upper-fan valley levées and on parts of the mid-fan. Most of its sediment volume is in a mud bed on the lower fan and basin plain downslope from a sharp bend in the mid-fan distributary system. Little sediment occurs farther downstream within this distributary system. It appears that most of the turbidity current overtopped the levée at the channel bend, a process referred to as flow stripping. The muddy upper part of the flow continued straight down to the basin plain. The residual more sandy base of the flow in the distributary channel was not thick enough to maintain itself as gradient decreased and the channel opened out on to the mid-fan lobe. Flow stripping may occur in any turbidity current that is thick relative to channel depth and that flows in a channel with sharp bends. Where thick sandy currents are stripped, levée and mid-fan erosion may occur, but the residual current in the channel will lose much of its power and deposit rapidly. In thick muddy currents, progressive overflow of mud will cause less declaration of the residual channelised current. Thus both size and sand-to-mud ratio of turbidity currents feeding a fan are important factors controlling morphologic features and depositional areas on fans. The size-frequency variation for different types of turbidity currents is estimated from the literature and related to the evolution of fan morphology.  相似文献   

5.
Recognition of the occurrence and extent of hemipelagic and pelagic deposits in turbidite sequences is of considerable importance for environmental analysis (palaeodepth, circulation, distance from land, hemipelagic or pelagic versus turbidite sedimentation rates) of ancient basins. Differentiation between the finegrained parts (E-division) of turbidites and the (hemi-) pelagic layers (F-division of turbidite-pelagite alternations) is facilitated in basins where carbonate turbidites were deposited below the carbonate compensation depth (CCD) such as the Flysch Zone of the East Alps but may be difficult in other basins where less compositional contrast is developed between the fine-grained turbidites and hemipelagites. This difficulty pertains particularly in Palaeozoic and older basins. For Late Mesozoic-Cenozoic oceans with a relatively deep calcite compensation level three other types of turbidite basins may be distinguished for which differentiation becomes increasingly more difficult in the sequence from (1) to (3): (1) terrigenous turbidite basins above the CCD; (2) carbonate turbidite basins above the CCD; (3) terrigenous turbidite basins below the CCD. Criteria and methods useful for the differentiation between turbiditic and hemipelagic mudstone in the Upper Cretaceous of the Flysch Zone of the East Alps include calcium carbonate content, colour, sequential analysis, distribution of bioturbation, and microfaunal content. In modern turbidite basins clay mineral content, organic matter content, plant fragments, and grain-size (graded bedding, maximum grain diameter) have reportedly also been used as criteria (see Table 3). Deposition of muddy sediment by turbidity currents on weakly sloping sea bottoms such as the distal parts of deep-sea fans or abyssal plains is not only feasible but may lead to the accumulation of thick layers. Contrary to earlier speculation it can be explained by the hydrodynamic theory of turbidity currents, if temperature differences between the turbidity current and the ambient deep water as well as relatively high current velocities for the deposition of turbiditic muds (an order of magnitude higher on mud surfaces than commonly assumed) are taken into consideration. The former add to the capacity of turbidity currents to carry muddy sediment without creating a driving force on a low slope.  相似文献   

6.
随着页岩油气勘探开发和相关领域研究的不断深入,细粒沉积物的搬运和沉积已成为当前沉积学研究的热点问题之一,但中国中生代湖泊环境中的泥质重力流沉积尚未引起应有的关注。通过岩心观察、薄片鉴定等手段及综合研究,分析了鄂尔多斯盆地晚三叠世湖相泥质重力流沉积特征,探讨了其形成机制与成因分类。鄂尔多斯盆地三叠系延长组湖相泥页岩结构类型多样,发育泥质块体流沉积、泥质碎屑流沉积、泥质浊流沉积和泥质异重流沉积等多种重力流沉积类型。按照泥质含量将重力流划分为砂质重力流、泥质重力流和混合重力流3种亚类,并根据成因将重力流划分为滑塌体、碎屑流、浊流及异重流等4种亚类;结合成因和泥质含量,将重力流沉积共划分为12种类型。滑塌岩、碎屑岩分布于三角洲前缘斜坡脚附近;浊积岩、异重岩广泛分布于三角洲斜坡至沉积中心。认为泥质沉积物可以在强水动力条件下搬运-沉积;重力流沉积细粒物质在湖相沉积中占据很大的比例;泥质重力流对泥页岩中的碎屑物质、黏土矿物及有机质的搬运和沉积起到重要作用,因而对于页岩油气的生烃、储集性能和压裂工艺研究具有重要意义。  相似文献   

7.
Controlled laboratory experiments reveal that the lower part of turbidity currents has the ability to enter fluid mud substrates, if the bed shear stress is higher than the yield stress of the fluid mud and the density of the turbidity current is higher than the density of the substrate. Upon entering the substrate, the turbidity current either induces mixing between flow‐derived sediment and substrate sediment, or it forms a stable horizontal flow front inside the fluid mud. Such ‘intrabed’ flow is surrounded by plastically deformed mud; otherwise it resembles the front of a ‘bottom‐hugging’ turbidity current. The ‘suprabed’ portion of the turbidity current, i.e. the upper part of the flow that does not enter the substrate, is typically separated from the intrabed flow by a long horizontal layer of mud which originates from the mud that is swept over the top of the intrabed flow and then incorporated into the flow. The intrabed flow and the mixing mechanism are specific types of interaction between turbidity currents and muddy substrates that are part of a larger group of interactions, which also include bypass, deposition, erosion and soft sediment deformation. A classification scheme for these types of interactions is proposed, based on an excess bed shear stress parameter, which includes the difference in the bed shear stress imposed by the flow and the yield stress of the substrate and an excess density parameter, which relies on the density difference between the flow and the substrate. Based on this classification scheme, as well as on the sedimentological properties of the laboratory deposits, an existing facies model for intrabed turbidites is extended to the other types of interaction involving soft muddy substrates. The physical threshold of flow‐substrate mixing versus stable intrabed flow is defined using the gradient Richardson number, and this method is validated successfully with the laboratory data. The gradient Richardson number is also used to verify that stable intrabed flow is possible in natural turbidity currents, and to determine under which conditions intrabed flow is likely to be unstable. It appears that intrabed flow is likely only in natural turbidity currents with flow velocities well below ca 3·5 m s?1, although a wider range of flows is capable of entering fluid muds. Below this threshold velocity, intrabed flow is stable only at high‐density gradients and low‐velocity gradients across the upper boundary of the turbidity current. Finally, the gradient Richardson number is used as a scaling parameter to set the flow velocity limits of a natural turbidity current that formed an inferred intrabed turbidite in the deep‐marine Aberystwyth Grits Group, West Wales, United Kingdom.  相似文献   

8.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

9.
The development of mudwaves on the levees of the modern Toyama deep‐sea channel has been studied using gravity core samples combined with 3·5‐kHz echosounder data and airgun seismic reflection profiles. The mudwaves have developed on the overbank flanks of a clockwise bend of the channel in the Yamato Basin, Japan Sea, and the mudwave field covers an area of 4000 km2. Mudwave lengths range from 0·2 to 3·6 km and heights vary from 2 to 44 m, and the pattern of mudwave aggradation indicates an upslope migration direction. Sediment cores show that the mudwaves consist of an alternation of fine‐grained turbidites and hemipelagites whereas contourites are absent. Core samples demonstrate that the sedimentation rate ranged from 10 to 14 cm ka?1 on the lee sides to 17–40 cm ka?1 on the stoss sides. A layer‐by‐layer correlation of the deposits across the mudwaves shows that the individual turbidite beds are up to 20 times thicker on the stoss side than on the lee side, whereas hemipelagite thicknesses are uniform. This differential accretion of turbidites is thought to have resulted in the pattern of upcurrent climbing mudwave crests, which supports the notion that the mudwaves have been formed by spillover turbidity currents. The mudwaves are interpreted to have been instigated by pre‐existing large sand dunes that are up to 30 m thick and were created by high‐velocity (10°ms?1), thick (c. 500 m) turbidity currents spilling over the channel banks at the time of the maximum uplift of the Northern Japan Alps during the latest Pliocene to Early Pleistocene. Draping of the dunes by the subsequent, lower‐velocity (10?1ms?1), mud‐laden turbidity currents is thought to have resulted in the formation of the accretionary mudwaves and the pattern of upflow climbing. The dune stoss slopes are argued to have acted as obstacles to the flow, causing localized loss of flow strength and leading to differential draping by the muddy turbidites, with greater accretion occurring on the stoss side than on the lee slope. The two overbank flanks of the clockwise channel bend show some interesting differences in mudwave development. The mudwaves have a mean height of 9·8 m on the outer‐bank levee and 6·2 m on the inner bank. The turbidites accreted on the stoss sides of the mudwaves are 4–6 times thicker on the outer‐bank levee than their counterparts on the inner‐bank levee. These differences are attributed to the greater flow volume (thickness) and sediment flux of the outer‐bank spillover flow due to the more intense stripping of the turbidity currents at the outer bank of the channel bend. Differential development of mudwave fields may therefore be a useful indicator in the reconstruction of deep‐sea channels and their flow hydraulics.  相似文献   

10.
《Sedimentology》2018,65(3):952-992
Hybrid event beds comprising both clean and mud‐rich sandstone are important components of many deep‐water systems and reflect the passage of turbulent sediment gravity flows with zones of clay‐damped or suppressed turbulence. ‘Behind‐outcrop’ cores from the Pennsylvanian deep‐water Ross Sandstone Formation reveal hybrid event beds with a wide range of expression in terms of relative abundance, character and inferred origin. Muddy hybrid event beds first appear in the underlying Clare Shale Formation where they are interpreted as the distal run‐out of the wakes to flows which deposited most of their sand up‐dip before transforming to fluid mud. These are overlain by unusually thick (up to 4·4 m), coarse sandy hybrid event beds (89% of the lowermost Ross Formation by thickness) that record deposition from outsized flows in which transformations were driven by both substrate entrainment in the body of the flow and clay fractionation in the wake. A switch to dominantly fine‐grained sand was accompanied initially by the arrest of turbulence‐damped, mud‐rich flows with evidence for transitional flow conditions and thick fluid mud caps. The mid and upper Ross Formation contain metre‐scale bed sets of hybrid event beds (21 to 14%, respectively) in (i) upward‐sandying bed set associations immediately beneath amalgamated sheet or channel elements; (ii) stacked thick‐bedded and thin‐bedded hybrid event bed‐dominated bed sets; (iii) associations of hybrid event bed‐dominated bed sets alternating with conventional turbidites; and (iv) rare outsized hybrid event beds. Hybrid event bed dominance in the lower Ross Formation may reflect significant initial disequilibrium, a bias towards large‐volume flows in distal sectors of the basin, extensive mud‐draped slopes and greater drop heights promoting erosion. Higher in the formation, hybrid event beds record local perturbations related to channel switching, lobe relocations and extension of channels across the fan surface. The Ross Sandstone Formation confirms that hybrid event beds can form in a variety of ways, even in the same system, and that different flow transformation mechanisms may operate even during the passage of a single flow.  相似文献   

11.
针对鄂尔多斯盆地南部延长组长7段富有机质泥页岩岩石学特征及生烃潜力认识不清的问题,通过对研究区泥页岩的岩石学、矿物组成、有机地球化学、孔隙类型及沉积模式精细研究,结果表明:研究区主要存在3种不同类型的泥页岩,分别是泥质碎屑流成因的块状泥岩、浊流成因的正粒序泥岩及沉积于静水环境中的纹层状泥岩.块状泥岩和正粒序泥岩含有较多的陆源碎屑矿物,纹层状泥岩碳酸盐矿物含量高,同时含有较高的有机碳及可溶烃和热解烃,它们的干酪根类型以Ⅱ型为主,含有少量Ⅰ型.泥页岩储集空间主要为粒间孔、粒内孔及微裂缝,有机质孔少见,纹层状泥岩孔隙类型多样,储集空间大.泥质碎屑流形成的块状泥岩沉积在湖盆坡脚处,浊流成因的正粒序泥岩及纹层状泥岩广泛沉积于湖盆中心,且厚度大.  相似文献   

12.
A piston core (RC16-57) raised from the northwestern flank of the Ceará Rise contained several turbidites up to 62 cm thick with grain sizes ranging from clay to coarse sand. These turbidites were similar in composition to terrigenous turbidites found throughout the Amazon Cone, continental rise and abyssal plains of the western Equatorial Atlantic. The core site (RC16-57) on the Ceará Rise, however, was 156 m above the level of the adjacent Amazon Cone (the source of the turbidites). Thus the turbidity currents which deposited these beds apparently had to flow upslope for 17 km to reach the core site. Sub-bottom reflectors observed on a 3.5 kHz echogram that extended from the Amazon Cone upslope past the core site suggested that these and deeper turbidites extended from the cone up the rise flank to distances of up to 40 km from the cone/rise boundary and to elevations up to 400 m above the level of the cone at the base of the rise. An equally plausible explanation could be that the turbidity currents that deposited these sediments were in excess of 400 m in thickness and thus would not require uphill flow to reach their observed location on the rise flank. The absence of terrigenous turbidites from the bases of topographic knolls on the continental rise and abyssal plains throughout the western Equatorial Atlantic indicated, however, that turbidity currents were normally less than 100 m thick and hence would seem to rule out this explanation. The average gradient of the rise flank in this region was about 1 : 1000 (\sim 0.5°).  相似文献   

13.
Sediment trapping and transport in the ACE Basin,South Carolina   总被引:1,自引:0,他引:1  
A study took place during May 1998 and May 1999 to examine the processes controlling localized accumulation of fine-grained sediments in the lower Ashepoo River. This region, referred to as the Mud Reach, is an area of muddy bottom sediments bounded by fine sands. The Mud Reach is located downstream of the landward extent of the salt intrusion where an estuarine turbidity maximum commonly occurs. Tidal time-series measurements made in the Mud Reach during May 1998, when river discharge was at a 10-yr high, showed high concentrations of suspended sediment (0.05–1 g I−1) during maximum tidal current velocity with concentrations in the bottom 30 cm exceeding 70 g I−1 (fluid mud). A correlation between salinity stratification and increased suspended sediment concentration suggests that inhibited vertical mixing enhances the settling of flocculated sediments to the bed. Measurements made during May 1999 show a two-order-of-magnitude decrease in the concentration of near-bed sediments. A decrease in river discharge during the 1999 observation period of more than 100 m3 s−1 suggests that changes in the hydrography and in the supply of sediments to the system both may be important factors in the trapping of fine-grained sediments in the region. The source of sediments is likely from muddy deposits in the Fenwick Cut, a man-made section of the Atlantic Intracoastal Waterway about 2 km north of the Mud Reach that connects the Ashepoo and Edisto Rivers. The Fenwick Cut appears to be an effective area for trapping sediments where shoaling has increased by 130% in the last decade. Current measurements show that flow velocities decrease through the Cut, likely allowing for the settling of suspended particles that form the thick deposits of unconsolidated mud observed during both years.  相似文献   

14.
Sediment avalanche from delta ramp is one of the significant development mechanisms for a turbidite system in a lacustrine basin. To advance our understanding of deep-water sedimentary processes in a lacustrine delta ramp, delta-fed turbidites in the Eocene Dongying depression of the Bohai Bay Basin were studied using core data, 3-D seismic data and well log data. Sandy debris flows, muddy debris flows, mud flows, turbidity currents, slides, sandy slumps and muddy slumps were interpreted based on the identification of lithofacies. Data indicates that deep-water sedimentary processes in the study area were dominated by debris flows and slumps, which accounted for ~68% and 25% (in thickness) of total gravity flow deposits, respectively; turbidity-current deposits only accounted for ~5%. Mapping of turbidites showed that most were deposited after short-distance transportation (<20 km), restricted by the scale of deep-water areas and local topography. Channels, depositional lobes, debris flow tongues, muddy turbiditic sheets, slides and slumps were identified in a delta-fed ramp system. Slides and slumps were dominant at the base of slopes or at the hanging walls of growth faults with strong tectonic activity. Channels and depositional lobes developed in gentle, low-lying areas, where sediments were transported longer distances. Sand-rich sediment supply, short-distance transportation and local topography were crucial factors that controlled sedimentation of this ramp system. Channels generally lacked levees and only produced scattered sandstones because of possible hydroplaning of debris flow and unstable waterways. In addition to lobes, debris flow tongues could also be developed in front of channels. These findings have significant implications for hydrocarbon exploration of deep-water sandstone fed by deltas in a lacustrine basin.  相似文献   

15.
刘家铎 《沉积学报》1992,10(4):137-145
洛亚蒂盆地沉积物是棕黄色软泥和生物碎屑砂。它们有5个来源:新喀里多尼亚堤礁、深海生物群落、浮游生物群体和火山碎屑。沉积物由浊流和半深海沉积物的互层组成,可以通过粒度分析,矿物成分和生物碎屑的分析将两者加以区分。通过对蒂奥和利富之间的岩心的研究,认识到在蒂奥水道对面,分布着一个展布广阔,但幅度很小、延伸50km的海底扇。  相似文献   

16.
Much of our understanding of submarine sediment‐laden density flows that transport very large volumes (ca 1 to 100 km3) of sediment into the deep ocean comes from careful analysis of their deposits. Direct monitoring of these destructive and relatively inaccessible and infrequent flows is problematic. In order to understand how submarine sediment‐laden density flows evolve in space and time, lateral changes within individual flow deposits need to be documented. The geometry of beds and lithofacies intervals can be used to test existing depositional models and to assess the validity of experimental and numerical modelling of submarine flow events. This study of the Miocene Marnoso Arenacea Formation (Italy) provides the most extensive correlation of individual turbidity current and submarine debris flow deposits yet achieved in any ancient sequence. One hundred and nine sections were logged through a ca 30 m thick interval of time‐equivalent strata, between the Contessa Mega Bed and an overlying ‘columbine’ marker bed. Correlations extend for 120 km along the axis of the foreland basin, in a direction parallel to flow, and for 30 km across the foredeep outcrop. As a result of post‐depositional thrust faulting and shortening, this represents an across‐flow distance of over 60 km at the time of deposition. The correlation of beds containing thick (> 40 cm) sandstone intervals are documented. Almost all thick beds extend across the entire outcrop area, most becoming thinly bedded (< 40 cm) in distal sections. Palaeocurrent directions for flow deposits are sub‐parallel and indicate confinement by the lateral margins of the elongate foredeep. Flows were able to traverse the basin in opposing directions, suggesting a basin plain with a very low gradient. Small fractional changes in stratal thickness define several depocentres on either side of the Verghereto (high) area. The extensive bed continuity and limited evidence for flow defection suggest that intrabasinal bathymetric relief was subtle, substantially less than the thickness of flows. Thick beds contain two distinct types of sandstone. Ungraded mud‐rich sandstone intervals record evidence of en masse (debrite) deposition. Graded mud‐poor sandstone intervals are inferred to result from progressive grain‐by‐grain (turbidite) deposition. Clast‐rich muddy sandstone intervals pinch‐out abruptly in downflow and crossflow directions, in a fashion consistent with en masse (debrite) deposition. The tapered shape of mud‐poor sandstone intervals is consistent with an origin through progressive grain‐by‐grain (turbidite) deposition. Most correlated beds comprise both turbidite and debrite sandstone intervals. Intrabed transitions from exclusive turbidite sandstone, to turbidite sandstone overlain by debrite sandstone, are common in the downflow and crossflow directions. This spatial arrangement suggests either: (i) bypass of an initial debris flow past proximal sections, (ii) localized input of debris flows away from available sections, or (iii) generation of debris flows by transformation of turbidity currents on the basin plain because of seafloor erosion and/or abrupt flow deceleration. A single submarine flow event can comprise multiple flow phases and deposit a bed with complex lateral changes between mud‐rich and mud‐poor sandstone.  相似文献   

17.
18.
High-resolution seismic profiles collected by Parasound and SES-2000 deep profilers during Cruise 26 of the R/V Akademik Sergei Vavilov (2009) along the continental slope base of South America, NW Africa, and West Europe are correlated with the deep-sea drilling boreholes. Lithofacies interpretation of the Quaternary deep-water seismic facies of hemipelagites, bottom current deposits (contourites), and gravitites (turbidites, mud flow deposits) is presented. The data obtained reveal the domination of contourites in the accumulation of continental rise apron under conditions of relatively scarce terrigenous material supply. It is shown that acoustically stratified seismic facies under these conditions commonly reflect interbedding of the terrigenous clay and biogenic calcareous ooze related to the Pleistocene glacial/interglacial cycles.  相似文献   

19.
The early Holocene S-1 sapropelic sequence in the northwest Hellenic Trench has been studied in six piston cores from the Zakinthos and Strofadhes basins. The S-1 sequence, 0.7-3.5 m thick, consists principally of silt to mud turbidites, with rare, thick, disorganized, sandy turbidites. These lithofacies are described and compared with fine-grained turbidites from the literature. Petrographical data, including the abundance of organic carbon and planktonic microfossils, indicate that the principal source of sediment to the turbidites was from the continental slope. On the basis of composition and texture, five turbidite units can be correlated between the two basins. These basins are fed by separate but adjacent drainage systems. The apparently synchronous occurrence of turbidites in the two drainage systems suggests that the turbidity currents were seismically triggered. Some of the turbidites show poorly organized beds which may reflect the slump origin and the short (30 km) distances of travel. Turbidites were deposited more frequently in the S-1 sapropelic interval than in the over- and underlying sediments. Application of slope stability analysis shows that on the 8° slopes above the basins, a 10-cm-thick sapropel would have a factor of safety of about 2, and would fail with earthquake accelerations in excess of 0.08 g. The frequency of earthquakes likely to produce such accelerations is similar to the observed frequency of turbidites. The low strength of the sapropelic sediment makes it particularly susceptible to such failure. Similar thin-skinned slumping may be an important process for the initiation of turbidity currents in other environments where there are steep slopes or high sedimentation rates.  相似文献   

20.
Classification,formation, and transport mechanisms of mud clasts   总被引:2,自引:0,他引:2  
Mud clasts are common in non-marine to marine sedimentary records, however, why lack a widely accepted classification scheme? We propose that it is the relative balance of volumetric abundance, sorting, roundness, and grain size that controls the texture and fabric of mud clasts. Nine distinct types of mud clasts are identified in the study based on quantitatified properties, and fall into two groups coarse-grained and fine-grained. The generation of mud clasts can be assigned to failure, erosion, and/or bioturbation of muddy sediment. These clasts are transported within fluid flows including Newtonian fluids, non-Newtonian fluids, and Bingham plastics (gravity flow and turbidity flow), showing various physical characteristics depended upon the density and viscosity of flows. Newtonian flows with less density and viscosity commonly form mud clasts with mature textures. In non-Newtonian (gravity-driven) flows, mud clasts are normally transported in laminar flows with high density and viscosity, developing matrix-supported mud clasts with immature textures. The study of classification, formation, and transport mechanisms of mud clasts has implications for identifying and interpreting sedimentary environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号