首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and ?191 ± 45 mmol m?2 day?1 for the Gulf sites and 130 ± 57 and ?152 ± 64 mmol m?2 day?1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.  相似文献   

2.
This study addresses the distribution of total phosphorus (TP) and its inorganic (IP) and organic (OP) fractions, grain-size and organic matter of surface and recent sediments, coupled to the behavior of total and dissolved inorganic phosphorus (TP and DIP) of the water column, of the semi-pristine Guaratuba Bay estuary, SE Brazil. Surface sediment samples were taken at 43 sites spread along the estuarine gradient and recent sediments from 3 short (35 cm long) cores from the upper, central and lower portions of the estuary, respectively. Highest TP and IP concentrations of surface sediments were detected within the upper sector and the transition zone between the upper and central sectors, all characterized by fine sediments, low salinities and water depths. In contrast, the lower sector and its narrow and deep tidal channel, subject to more intense tidal forcing, exhibited a higher fraction of sandy sediments with lower TP, IP and OP contents. In spite of the spatial variability in sediment grain size, IP corresponded to the major fraction of TP in all estuarine sectors and both TP and IP correlated significantly with the fine sedimentary (silt + clay) grain-size fraction. The fine surface sediments acted as a trap for IP at the fresh water–low salinity interface, which also corresponded to the region of a DIP sink in surface waters. In general, the short sediment cores showed that TP and IP contents increased from 15 cm depths to the top layer. Published sedimentation rates from additional cores taken at the sites of the short cores of this study, implied that depositional alterations of TP and IP increased during the early 1970s, which corresponded to the onset of anthropogenic disturbances from crop plantations in the lowland plains of the river end-member and urbanization at the estuary’s mouth and along the adjacent coast.  相似文献   

3.
Two sediment cores from the inner continental shelf of SW India, SK‐148/13 (4.66 m long; from 50 m water depth) and SK‐148/14 (5.37 m long; from 22 m water depth), were studied for provenance and palaeomonsoonal implications. Sediment layers at different depth intervals in these cores were estimated for clay minerals and organic matter content. Five surface sediment samples from the nearby Kali River estuary of the adjacent hinterland were also analysed for clay mineral contents. In both cores and Kali River sediments, smectite is the dominant clay followed by illite, and kaolinite or chlorite. Based on the similarities of the abundances of clay minerals and their relative wt‐% in the inner shelf sediment cores and in surface sediments of the estuary as demonstrated by significance tests, Al‐rich illite, and negligible contribution of clay from the deep‐sea and aeolian sources, it can be inferred that the sediments of the two inner continental shelf cores were derived from the adjacent hinterland. Application of statistical discordancy and significance tests on the down‐core variations in the crystallinity index (CI) of illite and organic matter content in the sediment cores indicates intense monsoonal (high rainfall) conditions at the adjacent hinterland during about 4300–6200 and 9300–10,400 years BP. These inferences are comparable to those from other well‐established palaeomonsoonal indicators such as sedimentation rates and mineral magnetic properties. The CI of illite, an easily determinable and climatically sensitive parameter, can thus be a reliable palaemonsoonal indicator for inner shelf sediment cores. The statistical methodology used in this work highlights the advantages of a quantitative interpretation of the data instead of the conventional qualitative visual examination.  相似文献   

4.
Mid-shelf sediments off the Oregon coast are characterized as fine sands that trap and remineralize phytodetritus leading to the consumption of significant quantities of dissolved oxygen. Sediment oxygen consumption (SOC) can be delayed from seasonal organic matter inputs because of a transient buildup of reduced constituents during periods of quiescent physical processes. Between 2009 and 2013, benthic oxygen exchange rates were measured using the noninvasive eddy covariance (EC) method five separate times at a single 80-m station. Ancillary measurements included in situ microprofiles of oxygen at the sediment–water interface, and concentration profiles of pore water nutrients and trace metals, and solid-phase organic C and sulfide minerals from cores. Sediment cores were also incubated to derive anaerobic respiration rates. The EC measurements were made during spring, summer, and fall conditions, and they produced average benthic oxygen flux estimates that varied between ?2 and ?15 mmol m?2 d?1. The EC oxygen fluxes were most highly correlated with bottom-sensed, significant wave heights (H s). The relationship with H s was used with an annual record of deepwater swell heights to predict an integrated oxygen consumption rate for the mid-shelf of 1.5 mol m?2 for the upwelling season (May–September) and 6.8 mol m?2 y?1. The annual prediction requires that SOC rates are enhanced in the winter because of sand filtering and pore water advection under large waves, and it counters budgets that assume a dominance of organic matter export from the shelf. Refined budgets will require winter flux measurements and observations from cross-shelf transects over multiple years.  相似文献   

5.
Dissolved organic carbon (DOC) flux dynamics were examined in the context of other biogeochemical cycles in intertidal sediments inhabited by benthic microalgae. In August 2003, gross oxygenic photosynthetic (GOP) rates, oxygen penetration depths, and benthic flux rates were quantified at seven sites along the Duplin River, GA, USA. Sediments contained abundant benthic microalgal (BMA) biomass with a maximum chlorophyll a concentration of 201 mg chl a m?2. Oxygen microelectrodes were used to determine GOP rates and O2 penetration depth, which were tightly correlated with light intensity. Baseline and 15N-nitrate amended benthic flux core incubations were employed to quantify benthic fluxes and to investigate the impact of BMA on sediment water exchange under nitrogen (N)-limited and N-replete conditions. Unamended sediments exhibited tight coupling between GOP and respiration and served as a sink for water column dissolved inorganic nitrogen (DIN) and a source of silicate and dissolved inorganic carbon (DIC). The BMA response to the N addition indicated sequential nutrient limitation, with N limitation followed by silicate limitation. In diel (light–dark) incubations, biological assimilation accounted for 83% to 150% of the nitrate uptake, while denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) accounted for <7%; in contrast, under dark conditions, DNF and DNRA accounted for >40% of the NO3 ? uptake. The N addition shifted the metabolic status of the sediments from a balance of autotrophy and heterotrophy to net autotrophy under diel conditions, and the sediments served as a sink for water column DIN, silicate, and DIC but became a source of DOC, suggesting that the increased BMA production was decoupled from sediment bacterial consumption of DOC.  相似文献   

6.
Oxygen profiles in pelagic sediments from the Manganese Nodule Program calcareous and siliceous ooze sites (MANOP sites C and S) in the central Pacific Ocean were measured with microelectrodes and are used to predict oxygen consumption rates beneath the sediment-water interface. We explain possible artifacts which occur during sample recovery and argue that minimum estimates of 0.083 and 0.025 μ moles O2cm2day (C and S, respectively) can be calculated from the data. These oxygen consumption rates are in good agreement with in situ respirometer measurements previously reported for comparable sediments in the north Pacific, but previous estimates based on modeling of pore water nitrate profiles at both sites are two to five times smaller than our minimum fluxes. The differences in oxygen fluxes calculated by the two methods are probably in part due to uncertainty in the assumptions inherent in the nitrate model. However, non-steady state fluctuations in particulate organic matter fluxes could also be a reason for the disparity.  相似文献   

7.
Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm?year?1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C?m?2?year?1) at all three sites. Dissolved sulfate penetrated <20 cm below the sediment surface. Although measured rates of bicarbonate methanogenesis integrated over 1 m depth were low (0.96–1.09 mol?m?2?year?1), methane concentrations increased to >2 mmol?L?1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol?m?2?year?1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol?m?2?year?1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α?=?2.8–3.1 year?1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary.  相似文献   

8.
Monsoon-induced coastal upwelling, land run-off, benthic and atmospheric inputs make the western Indian shelf waters biologically productive that is expected to lead to high rates of mineralisation of organic matter (OM) in the sediments. Dissimilatory sulphate reduction (SR) is a major pathway of OM mineralisation in near-shore marine sediments owing to depletion of other energetically more profitable electron acceptors (O2, NO3 ?, Mn and Fe oxides) within few millimetres of the sediment-water interface. We carried out first ever study to quantify SR rates in the inner shelf sediments off Goa (central west coast of India) using the 35S radiotracer technique. The highest rates were recorded in the upper 10 cm of the sediment cores and decreased gradually thereafter below detection. Despite significant SR activity in the upper ~12 to 21 cm at most of the sites, pore water sulphate concentrations generally did not show much variation with depth. The depth integrated SR rate (0.066–0.46 mol m?2 year?1) decreased with increasing water depth. Free sulphide was present in low concentrations (0–3 μM) in pore waters at shallow stations (depth <30 m). However, high build-up of sulphide (100–600 μM) in pore waters was observed at two deeper stations (depths 39 and 48 m), 7–11 cm below the sediment-water interface. The total iron content of the sediment decreased from ~7 to 5 % from the shallowest to the deepest station. The high pyrite content indicates that the shelf sediments act as a sink for sulphide accounting for the low free sulphide levels in pore water. In the moderately organic rich (2–3.5 %) sediments off Goa, the measured SR rates are much lower than those reported from other upwelling areas, especially off Namibia and Peru. The amount of organic carbon remineralised via sulphate reduction was ~0.52 mol m?2 year?1. With an estimated average organic carbon accumulation rate of ~5.6 (±0.5) mol m?2 year?1, it appears that the bulk of organic matter gets preserved in sediments in the study region.  相似文献   

9.
The spatial distribution and geoaccumulation indices of four heavy metals were investigated in very shallow marine sediments of southwestern Spain. Surface sediments were collected from 43 sites with water depth ranging from 3 to 20 m. High to very high pollution levels (I geo > 4 for zinc, lead and copper) were detected near the end of the Huelva bank, whereas chromium shows a more hazardous distribution in the southwestern Spanish littoral. Low to moderate heavy metal contents (mainly zinc and lead) were also observed in other two areas at different water depths (Isla Cristina-Piedras River: 10–18 m water depth; Mazagón–Matalascañas: <10 m water depth), whereas unpolluted to moderately polluted sediments were detected in the very shallow zones (<8 m water depth) located between the mouths of the Guadiana and the Piedras Rivers. A regional scenario indicates a strong pollution of the adjacent marine areas by polluted inputs derived from the Tinto–Odiel rivers, with a partial transport of heavy metals by W–E littoral currents even 40 km eastward. The Guadiana River is an additional source of zinc–lead contamination near the Spanish–Portuguese border, mainly at water depths up to 10 m. All these rivers are affected by acid mine drainage processes, derived from millennial mining activities. This pollution affects the sediment quality even 40 km eastward.  相似文献   

10.
Sediment denitrification was monthly evaluated in two tropical coastal lagoons with different trophic states using the 15N isotope pairing technique. Denitrification rates were very low in both environments, always <5.0 μmol N2 m?2 h?1 and were not significantly different between them. Oxygen consumption varied from 426 to 4248 μmol O2 m?2 h?1 and was generally three times higher in the meso-eutrophic than the oligotrophic lagoon. The low denitrification activity was ascribed to both low water NO3 ? concentrations (<2.0 μM) and little nitrate supply from nitrification. There was no correlation of denitrification with nitrate or ammonium fluxes. Sediments in temperate environments with similar oxygen consumption rates usually presented a higher proportion of nitrification–denitrification rates. Sediment oxygen consumption was a good predictor of sediment denitrification in both studied lagoons.  相似文献   

11.
Fifty two surface sediment samples collected from the region off Goa, central west coast of India from water depths of 15–3300 m were analyzed with special emphasis on foraminiferal content. Rectilinear benthic foraminiferal morphogroup shows a high relative abundance within Oxygen Minimum Zone (OMZ), both shallow marine (50–60 m water depth) and intermediate to deep water (150–1500 m water depth). We gave special emphasis on four rectilinear foraminiferal genera, namely Fursenkoina, Bolivina, Bulimina and Uvigerina to observe their individual distribution among OMZ. We found genus Fursenkoina predominates at the shallow water OMZ, within the water depth zone of 50–60 m. Within 150–1500 m water depth, which is considered as intermediate to deep water OMZ in this region, genus Uvigerina shows its highest abundance above 1000 m water depth, whereas genus Bulimina shows its affinity with deeper water environment (>1000 m water depth). Genus Bolivina does not show any such depth preference, except its higher abundance in only intermediate to deep water OMZ. This depth differentiation among four rectilinear benthic foraminiferal genera presents the basic data for palaeoclimatic study based on the extent and intensity of OMZ along with the palaeobathymetry study.  相似文献   

12.
Sediment-water exchanges of ammonium (NH4 +), nitrate + nitrite (NOx ?), filterable reactive phosphorus (FRP, primarily ortho-phosphate), and oxygen (O2) under aphotic (heterotrophic) conditions were determined at 2–5 stations in the Neuse River Estuary, from 1987 to 1989. Shallow (1 m), sandy stations were sampled along the salinity gradient. Fluxes from deep (>2 m) sites were compared to the shallow sites in two salinity zones. Grain size became finer and organic content increased with depth in the oligohaline zone but not in the mesohaline zone. Net release of NH4 + and FRP occurred at all sites. Fluxes varied from slight uptake to releases of 200–500 μmol m?2 h?1 (NH4 +) and 150–900 μmol m?2 h?1 (FRP). Net NOx ? exchange was near zero, but were ±100 μmol m?2 h?1 over the year. Release of NH4 + and FRP from the shallow sandy stations decreased with distance down the estuary, but O2 uptake did not change. The deeper oligohaline site had twofold higher rates of NH4 + and FRP release and O2 uptake than the shallow site, but no differences occurred between depths in the mesohaline zone. Temperature and organic content were important controls for all fluxes, but water column NOx ? concentration was also important in regulating NOx ? exchanges. Ratios of oxygen consumption to NH4 + release were near the predicted ratio (Redfield model) at oligohaline sites but increased down estuary at mesohaline sites. This may be due to greater nitrification rates promoted by autotrophy in the sediments.  相似文献   

13.
A comparative experiment was conducted in two cross sections with sandy and sandy loam sediment textures along an agricultural drainage stream in eastern China to address the effects of sediment texture on in-stream nitrogen uptake efficiency. Using dimerous chambers for in situ incubations, NO3-N and NH4-N uptake metrics (i.e., areal uptake rate and uptake velocity) and associated hydrochemical variables in the enclosed sediment–water column system were measured for 8 days and two nights across April–July in 2011 and March–June in 2012. For the investigated sites, in-stream uptake accounted for 2–45 and 9–36 % of the initial NH4-N and NO3-N within the enclosed water column, respectively. Although similar daytime, diel and day-to-day (daytime) variation patterns of NO3-N or NH4-N uptake metrics were observed for the two sites, the sandy loam sediments had average net NO3-N and NH4-N uptake efficiency ~50 % higher and ~40 % lower than for the sandy sediments, respectively. As NO3-N was the dominant nitrogen form in the studied water columns (typical of agricultural drainage rivers), the sandy loam sediment site had an average of about 47 % higher net uptake efficiency for dissolved inorganic nitrogen (i.e., NO3-N + NH4-N). This study demonstrates that sediment texture has a considerable effect on spatial variation of nitrogen uptake along the river system. Changing sediment texture due to anthropogenic modifications on catchment land use and stream channels has the potential to change stream nitrogen cycling as well as altering nitrogen inputs and forms to downstream aquatic ecosystems.  相似文献   

14.
The goal of this research was to investigate size-specific retention of clay and silt-sized grains by biofilms in sandy intertidal sediments. Sediment cores were collected from an intertidal flat in Cole Harbour, NS, and eroded at increasing shear stresses (0.08–0.60 Pa) with a Gust microcosm. Half of the cores were eroded without undergoing prior treatment, while sodium hypochlorite was added to the other cores to destroy biofilms. The disaggregated inorganic grain size distribution of sediment resuspended by the Gust microcosm was then obtained with a Multisizer? 3 Coulter Counter®, and each treated core was compared with its corresponding untreated core. Overall, significantly less total sediment mass was resuspended from untreated cores than from treated cores. At intermediate shear stresses, the sediment resuspended from treated cores contained a greater proportion of fine and medium silts than the sediment resuspended from untreated cores. Very fine silts and clays were not retained preferentially by biofilms. The results show that biofilms stabilize the sediment, but they do not necessarily enhance the proportion of finest sediment sizes, as previously proposed.  相似文献   

15.
In September 2011 and March 2012, benthic nutrient fluxes were measured in the San Francisco Bay Delta, across a gradient from above the confluence of the Sacramento and San Joaquin Rivers to Suisun Bay. Dark and illuminated core incubation techniques were used to measure rates of denitrification, nutrient fluxes (phosphate, ammonium, nitrate), and oxygen fluxes. While benthic nutrient fluxes have been assessed at several sites in northern San Francisco Bay, such data across a Delta–Bay transect have not previously been determined. Average September rates of DIN (nitrate, nitrite, ammonium) flux were net positive across all sites, while March DIN flux indicated net uptake of DIN at some sites. Denitrification rates based on the N2/Ar ratio approach were between 0.6 and 1.0 mmol m?2 day?1, similar to other mesotrophic estuarine sediments. Coupled nitrification–denitrification was the dominant denitrification pathway in September, with higher overlying water nitrate concentrations in March resulting in denitrification driven by nitrate flux into the sediments. Estimated benthic microalgal productivity was variable and surprisingly high in Delta sediments and may represent a major source of labile carbon to this ecosystem. Variable N/P stoichiometry was observed in these sediments, with deviations from Redfield driven by processes such as denitrification, variable light/dark uptake of nutrients by microalgae, and adsorption of soluble reactive phosphorus.  相似文献   

16.
The effects of fish farm activities on sediment biogeochemistry were investigated in Loch Creran (Western Scotland) from March to October 2006. Sediment oxygen uptake rates (SOU) were estimated along an organic matter gradient generated from an Atlantic salmon farm using a combination of in situ techniques: microelectrodes, planar optode and benthic chamber incubations. Sulphide (H2S) and pH distributions in sediment porewater were also measured using in situ microelectrodes, and dissolved inorganic carbon (DIC) fluxes were measured in situ using benthic chambers. Relationships between benthic fluxes, vertical distribution of oxidants and reduced compounds in the sediment were examined as well as bacterial abundance and biomass. Seasonal variations in SOU were relatively low and mainly driven by seasonal temperature variations. The effect of the fish farm on sediment oxygen uptake rate was clearly identified by higher total and diffusive oxygen uptake rates (TOU and DOU, respectively) on impacted stations (TOU: 70 ± 25 mmol O2 m?2 day?1; DOU: 70 ± 32 mmol O2 m?2 day?1 recalculated at the summer temperature), compared with the reference station (TOU: 28.3 ± 5.5 mmol O2 m?2 day?1; DOU: 21.5 ± 4.5 mmol O2 m?2 day?1). At the impacted stations, planar optode images displayed high centimetre scale heterogeneity in oxygen distribution underlining the control of oxygen dynamics by small-scale processes. The organic carbon enrichment led to enhanced sulphate reduction as demonstrated by large vertical H2S concentration gradients in the porewater (from 0 to 1,000 μM in the top 3 cm) at the most impacted site. The impact on ecosystem functions such as bioirrigation was evidenced by a decreasing TOU/DOU ratio, from 1.7 in the non-impacted sediments to 1 in the impacted zone. This trend was related to a shift in the macrofaunal assemblage and an increase in sediment bacterial population. The turnover time of the organic load of the sediment was estimated to be over 6 years.  相似文献   

17.
The availability of reactive phosphorus (P) may promote cyanobacterial blooms, a worldwide increasing phenomenon. Cyanobacteria may also regulate benthic P cycling through labile organic input to sediments, favouring reduced conditions and P release, ultimately acting as self-sustainment mechanism for the phytoplankton blooms. To analyse P–cyanobacteria feedbacks and compare external versus internal loads, we investigated P cycling in the Curonian Lagoon, a freshwater estuary with recurrent summer blooms. At two sites representing the dominant sediment types, we characterised P pools and mobility, via combined pore water analysis, calculation of diffusive exchanges and flux measurements via sediment core incubations. Annual P budgets were also calculated, to analyse the whole lagoon role as net sink or source. Muddy sediments, representing nearly 50 % of the lagoon surface, displayed higher P content if compared with sandy sediments, and most of this pool was reactive. The muddy site had consequently higher pore water dissolved inorganic phosphorus (DIP) concentrations maintaining high diffusive gradients. However, measured fluxes suggested that both sediment types were mostly P sinks except for a large DIP regeneration (nearly 30 μmol m?2 h?1) recorded at the muddy site during an intense cyanobacteria bloom. Such internal regeneration had the same order of magnitude as the annual external P load and may offset the net annual DIP sink role of the estuary. It may also prolong the duration of the bloom. Our results suggest that positive feedbacks can regulate N-fixing cyanobacteria blooms and internal P recycling, through either diffusive fluxes or sediment settling and resuspension.  相似文献   

18.
Oxygen consumption rates were measured individually for mixed groups of male, female, and immature striped bass,Morone saxatilis, in filtered Patuxent River, Maryland, water and in filtered water containing suspensions of either fuller’s earth or Patuxent River sediment. Oxygen consumption was determined at fixed swimming speeds at two temperatures, 15 and 22.5°C. Oxygen consumption of striped bass in filtered 15°C water increased as swimming speed increased. At 22.5°C, the same range of swimming speeds had no effect on rates of oxygen consumption. Similar data were obtained with fish swimming at the same speeds in water containing 0.79 g per liter fuller’s earth particles (15°C), and among those swimming at 31.7 and 49.0 cm per s in water containing 1.32 g per 1 Patuxent River sediment (22.5°C). Male and female striped bass respiration rates were similar under all test conditions. At 15°C, striped bass oxygen consumption rates during exposure to fuller’s earth while swimming at 8.6 and 31.7 cm per s did not differ from rates of fish swimming at the same speeds in filtered water. At 49.0 cm per s, rates were significantly depressed. Respiration rates of fish exposed to Patuxent River sediment at 22.5°C while swimming at 31.7 and 49.0 cm per s were significantly lower than those of fish in filtered water. Respiratory response of striped bass to suspended particle stress was manifested by depressed oxygen consumption. This is considered a short-term response to an acute stress. This response and the potential for hematological response to chronic suspended particle stress are discussed.  相似文献   

19.
We determined fluxes of oxygen and nutrients between water and sediments at 21 sites primarily in Virginia and North Carolina estuaries, over the past 15 yr. These sites represented broad ranges in salinity, tidal amplitude, hydrology, nutrient availability, turbidity, light availability, depth, sediment grain size, and anthropogenic disturbance. In general, we found that heterotrophically dominated sediments had the potential to degrade water quality, whereas photoautotrophy in the sediments ameliorated this impact. We propose a benthic trophic state index as a management tool to make general assessments of the degree to which sediments support ecological processes related to photoautotrophy. The index can be based on simple measurements of metabolic parameters. We also evaluated the relative significance of variability in the index across a number of spatial and temporal scales. Reduced photoautotrophy and/or enhanced heterotrophy tended to be associated with finer-grained, organic-rich sediments. This sediment type was common in oligohaline areas at water depths exceeding 2 m. Temporally, autotrophy declined from winter to spring particularly at sandy sites, while interannual variability was more pronounced for mud sites. *** DIRECT SUPPORT *** A01BY074 00011  相似文献   

20.
Serpentinite soils, common throughout the world, are characterized by low calcium-to-magnesium ratios, low nutrient levels and elevated levels of heavy metals. Yet the water quality and heavy metal concentrations in sediments of streams draining serpentine geology have been little studied. The aim of this work was to collect baseline data on the water quality (for both wet and dry seasons) and metals in sediments at 11 sites on the Marlborough Creek system, which drains serpentine soils in coastal central Queensland, Australia. Water quality of the system was characterized by extremely hard waters (555–698 mg/L as CaCO3), high dissolved salts (684–1285 mg/L), pH (8.3–9.1) and dissolved oxygen (often >110% saturation). Cationic dominance was Mg > Na > Ca > K and for anions HCO3 > Cl > SO4. Al, Cu and Zn in stream waters were naturally high and exceeded Australian and New Zealand Environment and Conservation Council guidelines. Conductivity displayed the highest seasonal variability, decreasing significantly after wet season flows. There was little seasonal variation in pH, which often exceeded regional guidelines. Stream sediments were enriched with concentrations of Ni, Cr, Co and Zn up to 35, 21, 10 and 2 times the world average for shallow sediments, respectively. Concentrations for Ni and Cr were up to 60 and 16 times those of the relevant Interim Sediment Quality Guidelines Low Trigger Values, respectively. The distinctive nature of the water and sediment data suggests that it would be appropriate to establish more localized water quality and sediment guidelines for the creek system for the water quality parameters conductivity, Cu and Zn (and possibly Cr and Cd also), and for sediment concentrations of Cd, Cr and Ni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号