首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Binary predictor patterns of geological features are integrated based on a probabilistic approach known as weights of evidence modeling to predict gold potential. In weights of evidence modeling, the log e of the posterior odds of a mineral occurrence in a unit cell is obtained by adding a weight, W + or W for presence of absence of a binary predictor pattern, to the log e of the prior probability. The weights are calculated as log e ratios of conditional probabilities. The contrast, C = W +W , provides a measure of the spatial association between the occurrences and the binary predictor patterns. Addition of weights of the input binary predictor patterns results in an integrated map of posterior probabilities representing gold potential. Combining the input binary predictor patterns assumes that they are conditionally independent from one another with respect to occurrences.  相似文献   

2.
An application of the theory of fuzzy sets to the mapping of gold mineralization potential in the Baguio gold mining district of the Philippines is described. Proximity to geological features is translated into fuzzy membership functions based upon qualitative and quantitative knowledge of spatial associations between known gold occurrences and geological features in the area. Fuzzy sets of favorable distances to geological features and favorable lithologic formations are combined using fuzzy logic as the inference engine. The data capture, map operations, and spatial data analyses are carried out using a geographic information system. The fuzzy predictive maps delineate at least 68% of the known gold occurrences that are used to generate the model. The fuzzy predictive maps delineate at least 76% of the unknown gold occurrences that are not used to generate the model. The results are highly comparable with the results of previous stream-sediment geochemical survey in the area. The results demonstrate the usefulness of a geologically constrained fuzzy set approach to map mineral potential and to redirect surficial exploration work in the search for yet undiscovered gold mineralization in the mining district. The method described is applicable to other mining districts elsewhere.  相似文献   

3.
GIS techniques have been used in the evaluation of favorability for base-metal mineralization in an area comprising the Cerro Azul and Apiaí quadrangles (SG.22-X-B-IV and V, scale 1:100.000), Ribeira Valley, São Paulo and Paraná States, Brazil. Methods have been employed for selection and weighting of prospective variables when applying GIS techniques to a digital database consisting of geological, geochemical and airborne geophysics, and mineral occurrence information. The exploration variable selection and analysis were based on two mineralization models: (1) Panelas type, vein-type carbonate hosted, and (2) Perau type, sedimentary-exhalative. The overlay was performed by weighted linear combination (WLC) and order weighted average (OWA) methods. Both methods proved suitable for the study area, yielding similar results. The ordered weighted averaging analysis provided the best results, with favorability maps showing a large number of classes occupying relatively minor areas. In comparison, the weighted linear combination analysis produced more coherent results but without details for minor areas. The prospective parameters obtained are considered suitable for both Perau and Panelas types. Both methods are inexpensive, and are suitable for selection of prospective areas during geological surveys in areas similar to the studied one.  相似文献   

4.
The inherent problems of classifying or inventorying potential mineral resources (as opposed to known mineral resources) pose specific challenges. In this paper, the application of a conceptual mineral exploration model and GIS to generate mineral potential maps as input to land-use policy decision-making is illustrated. We implement the criteria provided by a conceptual exploration model for nickeliferous-laterites by using a GIS to classify the nickeliferous-laterite potential of an area in the northeastern part of the Philippines. The spatial data inputs to the GIS are geological map data, topographic map data, and stream sediment point data. Processing of these data yields derivative maps, which are used as indicators of nickeliferous-laterite potential. The indicator maps then are integrated to furnish a nickeliferous-laterite potential map. This map is compared with present land-use classification and policy in the area. The results indicate high potential for nickeliferous-laterite occurrence in the area, but the zones of potential are in places where mineral resources development is prohibited. The prohibition was imposed before the nickeliferous-laterite potential was assessed by this study. Mineral potential classification therefore is a critical input to land-use policy-making so that prospective land is not alienated from future mineral resource development.  相似文献   

5.
This paper proposes a new approach of weights of evidence method based on fuzzy sets and fuzzy probabilities for mineral potential mapping. It can be considered as a generalization of the ordinary weights of evidence method, which is based on binary or ternary patterns of evidence and has been used in conjunction with geographic information systems for mineral potential mapping during the past few years. In the newly proposed method, instead of separating evidence into binary or ternary form, fuzzy sets containing more subjective genetic elements are created; fuzzy probabilities are defined to construct a model for calculating the posterior probability of a unit area containing mineral deposits on the basis of the fuzzy evidence for the unit area. The method can be treated as a hybrid method, which allows objective or subjective definition of a fuzzy membership function of evidence augmented by objective definition of fuzzy or conditional probabilities. Posterior probabilities calculated by this method would depend on existing data in a totally data-driven approach method, but depend partly on expert's knowledge when the hybrid method is used. A case study for demonstration purposes consists of application of the method to gold deposits in Meguma Terrane, Nova Scotia, Canada.  相似文献   

6.
Harris  J. R.  Wilkinson  L.  Heather  K.  Fumerton  S.  Bernier  M. A.  Ayer  J.  Dahn  R. 《Natural Resources Research》2001,10(2):91-124
A Geographic Information System (GIS) is used to prepare and process digital geoscience data in a variety of ways for producing gold prospectivity maps of the Swayze greenstone belt, Ontario, Canada. Data used to produce these maps include geologic, geochemical, geophysical, and remotely sensed (Landsat). A number of modeling methods are used and are grouped into data-driven (weights of evidence, logistic regression) and knowledge-driven (index and Boolean overlay) methods. The weights of evidence (WofE) technique compares the spatial association of known gold prospects with various indicators (evidence maps) of gold mineralization, to derive a set of weights used to produce the final gold prospectivity map. Logistic regression derives statistical information from evidence maps over each known gold prospect and the coefficients derived from regression analysis are used to weight each evidence map. The gold prospectivity map produced from the index overlay process uses a weighting scheme that is derived from input by the geologist, whereas the Boolean method uses equally weighted binary evidence maps.The resultant gold prospectivity maps are somewhat different in this study as the data comprising the evidence maps were processed purposely differently for each modeling method. Several areas of high gold potential, some of which are coincident with known gold prospects, are evident on the gold prospectivity maps produced using all modeling methods. The majority of these occur in mafic rocks within high strain zones, which is typical of many Archean greenstone belts.  相似文献   

7.
Posterior probabilities of occurrence for Zn-Pb Mississippi Valley Type (MVT) mineralization were calculated based on evidence maps derived from regional geology, Landsat-TM, RADARSAT-1, a digital elevation model and aeromagnetic data sets in the Borden Basin of northern Baffin Island, Canada. The vector representation of geological contacts and fault traces were refined according to their characteristics identified in Landsat-TM, RADARSAT-1, DEM, slope, aspect, and shaded relief data layers. Within the study area, there is an association between the occurrence of MVT mineralization and proximity to the contact of platformal carbonates and shale units of the adjacent geological formation. A spatial association also tends to exist between mineralization and proximity to E-W and NW-SE trending faults. The relationships of known MVT occurrences with the geological features were investigated by spatial statistical techniques to generate evidence maps. Supervised classification and filtering were applied to Landsat-TM data to divide the Society Cliffs Formation into major stratigraphic subunits. Because iron oxides have been observed at some of the MVT occurrences within the Borden Basin, Landsat-TM data band ratio (3/1) was calculated to highlight the potential presence of iron-oxides as another evidence map. Processed Landsat-TM data and other derived geological evidence maps provided useful indicators for identifying areas of potential MVT mineralization. Weights of evidence and logistic regression were used independently to integrate and generate posterior probability maps showing areas of potential mineralization based on all derived evidence maps. Results indicate that in spite of the lack of important data sets such as stream or lake sediment geochemistry, Landsat-TM data and regional geological data can be useful for MVT mineral-potential mapping.  相似文献   

8.
Geoscientific Information Systems (GIS) provide tools to quantitatively analyze and integrate spatially referenced information from geological, geophysical, and geochemical surveys for decision-making processes. Excellent coverage of well-documented, precise and good quality data enables testing of variable exploration models in an efficient and cost effective way with GIS tools. Digital geoscientific data from the Geological Survey of Finland (GTK) are being used widely as spatial evidence in exploration targeting, that is ranking areas based on their exploration importance. In the last few years, spatial analysis techniques including weights-of-evidence, logistic regression, and fuzzy logic, have been increasingly used in GTK’s mineral exploration and geological mapping projects. Special emphasis has been put into the exploration for gold because of the excellent data coverage within the prospective volcanic belts and because of the increased activity in gold exploration in Finland during recent years. In this paper, we describe some successful case histories of using the weights-of-evidence method for the Au-potential mapping. These projects have shown that, by using spatial modeling techniques, exploration targets can be generated by quantitatively analyzing extensive amounts of data from various sources and to rank these target areas based on their exploration potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号