首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tsunamis are among the most destructive and lethal of coastal hazards. These are time-specific events, and despite directly affecting a narrow strip of coastline, a single occurrence can have devastating effects and cause massive loss of life, especially in urbanized coastal areas. In this work, in order to consider the time dependence of population exposure to tsunami threat, the variation of spatio-temporal population distribution in the daily cycle is mapped and analyzed in the Lisbon Metropolitan Area. High-resolution daytime and nighttime population distribution maps are developed using ‘intelligent dasymetric mapping,’ that is, applying areal interpolation to combine best-available census data and statistics with land use and land cover data. Workplace information and mobility statistics are considered for mapping daytime distribution. In combination with a tsunami hazard map, information on infrastructure, land use and terrain slope, the modeled population distribution is used to assess people’s evacuation speed, applying a geospatial evacuation modeling approach to the city of Lisbon. The detailed dynamic population exposure assessment allows producing both daytime and nighttime evacuation time maps, which provide valuable input for evacuation planning and management. Results show that a significant amount of population is at risk, and its numbers increase dramatically from nighttime to daytime, especially in the zones of high tsunami flooding susceptibility. Also, full evacuation can be problematic in the daytime period, even if initiated immediately after a major tsunami-triggering earthquake. The presented approach greatly improves tsunami risk assessment and can benefit all phases of the disaster management process.  相似文献   

2.
In liner shipping, the objective of a shipping company is to gain profits with a certain number of dispatched vessels and shipping costs depending on the shipping line conditions and market trends. In view of the current need to address global warming and reduce carbon emissions, the issue of greenhouse gases produced by shipping line operations should be considered in addition to profits. This study applied centralized decision making involving centralized data envelopment analysis for optimal resource allocation for each shipping line in order to achieve optimal output and undesirable output levels with reallocation of resources while using currently available resources. In the empirical analysis, this study sought to verify the resource allocation model for the intra-Asia lines of a Taiwanese shipping company by using the network centralized data envelopment analysis. The results showed that the proposed model provides shipping line operators with information on the amounts by which they should reduce undesirable outputs (carbon emissions), increase line revenue and revenue TEU-nautical mile, and reallocate resources. As such, the model can serve as a guide for resource allocation in shipping lines.  相似文献   

3.
Tsunami evacuation planning in coastal communities is typically focused on local events where at-risk individuals must move on foot in a matter of minutes to safety. Less attention has been placed on distant tsunamis, where evacuations unfold over several hours, are often dominated by vehicle use and are managed by public safety officials. Traditional traffic simulation models focus on estimating clearance times but often overlook the influence of varying population demand, alternative modes, background traffic, shadow evacuation, and traffic management alternatives. These factors are especially important for island communities with limited egress options to safety. We use the coastal community of Balboa Island, California (USA), as a case study to explore the range of potential clearance times prior to wave arrival for a distant tsunami scenario. We use a first-in–first-out queuing simulation environment to estimate variations in clearance times, given varying assumptions of the evacuating population (demand) and the road network over which they evacuate (supply). Results suggest clearance times are less than wave arrival times for a distant tsunami, except when we assume maximum vehicle usage for residents, employees, and tourists for a weekend scenario. A two-lane bridge to the mainland was the primary traffic bottleneck, thereby minimizing the effect of departure times, shadow evacuations, background traffic, boat-based evacuations, and traffic light timing on overall community clearance time. Reducing vehicular demand generally reduced clearance time, whereas improvements to road capacity had mixed results. Finally, failure to recognize non-residential employee and tourist populations in the vehicle demand substantially underestimated clearance time.  相似文献   

4.
Wang  Zhenqiang  Jia  Gaofeng 《Natural Hazards》2021,105(2):2045-2071

Tsunami evacuation is an effective way to save lives from the near-field tsunami. Realistic evacuation simulation can provide valuable information for accurate evacuation risk assessment and effective evacuation planning. Agent-based modeling is ideal for tsunami evacuation simulation due to its capability of capturing the emergent phenomena and modeling the individual-level interactions among agents and the agents’ interactions with the environment. However, existing models usually neglect or simplify some important factors and/or mechanisms in tsunami evacuation. For example, uncertainties in seismic damages to the transportation network are not probabilistically considered (e.g., by simply removing the damaged links (roads/bridges) from the network). Typically a relatively small population (i.e., evacuees) is considered (due to computational challenges) while neglecting population mobility. These simplifications may lead to inaccurate estimation of evacuation risk. Usually, only single traffic mode (e.g., on foot or by car) is considered, while pedestrian speed adjustment and multi-modal evacuation (e.g., on foot and by car) are not considered concurrently. Also, pedestrian–vehicle interaction is usually neglected in the multi-modal evacuation. To address the above limitations, this study proposes a novel and more realistic agent-based tsunami evacuation model for tsunami evacuation simulation and risk assessment. Uncertainties in seismic damages to all links in the transportation network as well as uncertainties in other evacuation parameters are explicitly modeled and considered. A novel and more realistic multi-modal evacuation model is proposed that explicitly considers the pedestrian–vehicle interaction, walking speed variability, and speed adjustment for both the pedestrian and car according to traffic density. In addition, several different population sizes are used to model population mobility and its impact on tsunami evacuation risk. The proposed model is applied within a simulation-based framework to assess the tsunami evacuation risk assessment for Seaside, Oregon.

  相似文献   

5.
Recent tsunamis affecting the West Coast of the USA have resulted in significant damage to ports and harbors, as well as to recreational and commercial vessels attempting to escape the tsunami. With the completion of tsunami inundation simulations for a distant tsunami originating from the Aleutian Islands and a locally generated tsunami on the Cascadia subduction zone (CSZ), the State of Oregon is now able to provide guidance on the magnitudes and directions of the simulated currents for the Oregon coast and shelf region. Our analyses indicate that first wave arrivals for an Aleutian Island event would take place on the north coast,?~?3 h 40 min after the start of the earthquake,?~?20 min later on the southern Oregon coast. The simulations demonstrated significant along-coast variability in both the tsunamis water levels and currents, caused by localized bathymetric effects (e.g., submarine banks and reefs). A locally generated CSZ event would reach the open coast within 7–13 min; maximum inundation occurs at?~?30–40 min. As the tsunami current velocities increase, the potential for damage in ports and harbors correspondingly increases, while also affecting a vessels ability to maintain control out on the ocean. Scientific consensus suggests that tsunami currents?<?1.54 m/s are unlikely to impact maritime safety in ports and harbors. No such guidance is available for boats operating on the ocean, though studies undertaken in Japan suggest that velocities in the region of 1–2 m/s may be damaging to boats. In addition to the effects of currents, there is the added potential for wave amplification of locally generated wind waves interacting with opposing tsunami currents in the offshore. Our analyses explore potential wave amplification effects for a range of generic sea states, ultimately producing a nomogram of wave amplification for a range of wave and opposing current conditions. These data will be useful for US Coast Guard and Port authorities as they evaluate maritime tsunami evacuation options for the Oregon coast. Finally, we identify three regions of hazard (high, moderate, and low) across the Oregon shelf, which can be used to help guide final designation of tsunami maritime evacuation zones for the coast.  相似文献   

6.
Wang  Zhenqiang  Jia  Gaofeng 《Natural Hazards》2021,105(2):2073-2074
Natural Hazards - In the Abstract, the sentence “Usually, only single traffic mode (e.g., on foot or by car) is considered, while pedestrian speed adjustment and multi-modal evacuation (e.g.,...  相似文献   

7.
Educational tsunami evacuation map brochures in Washington and Oregon have been developed locally, resulting in significant differences between the types of tsunami hazard information they include. This paper identifies six tsunami hazard information types present in 38 brochures in Washington and Oregon: (1) tsunami hazard zone, (2) road network, (3) assembly areas, (4) evacuation guidance, (5) infrastructure, and (6) terrain. It compares and contrasts these information types in the maps and text of six of the brochures, including a proposed design standard in Oregon. Design differences of all 38 brochure maps are then organized using principles of cartographic abstraction, which describe mapmaker decisions about selection, generalization, and symbolization of information. We further use this framework to situate the information content of a new interactive Google Maps tool in Oregon. Our assessment identifies limitations of current tsunami hazard information that may be relevant to improving tsunami education. In theory, more advanced evacuation map tools can play an important role in reducing the limitations of tsunami hazard information relevant to the public. The new Google Maps tool addresses few of these limitations. Recognizing how map-making decisions define the underlying information content of evacuation maps can facilitate much needed future evaluations and developments in evacuation map design.  相似文献   

8.
Tanner  Alexa  Reynolds  Ryan 《Natural Hazards》2020,104(2):1679-1693
Natural Hazards - In the early hours of January 23, 2018, residents of Port Alberni, British Columbia, Canada, awoke to the sounds of the community’s tsunami warning system, alerting them of...  相似文献   

9.
基于Agent的模型(Agent-based models,ABM)研究已成为水资源管理研究理论与方法的重要补充。对水资源管理ABM研究进行归纳与展望,有助于探索优化中国水资源管理体制和机制。在阐述水资源管理ABM概念及内涵的基础上,提炼出主体决策规则和互作机制两个建模核心内容,并对其方法进行了归纳分析;从流域水资源优化配置、城镇居民用水管理和灌区水资源管理3个方面,对2009—2018年主要水资源管理ABM研究进行了综述;针对当前研究的难点与不足,提出未来研究重点:①拓展复杂适应理论在水资源管理领域的应用;②加强不确定性水资源管理ABM研究;③探索基于机器学习的决策规则建模方法;④重视参数校准和结果校验及检验方法;⑤加强模型表述格式标准化进程;⑥综合权衡水资源管理ABM框架。  相似文献   

10.
Natural Hazards - The south coast of Java has a long history of deadly seismogenic tsunamis. The most recent tsunami events in 1994 and 2006 killed hundreds due to lack of awareness and...  相似文献   

11.
Natural Hazards - Extreme risks associated with natural and man-made disasters involve disruptions to the production of goods or provision of services in interdependent systems. The reduced supply...  相似文献   

12.
13.
Kono  Tatsuhito  Okuno  Masaya  Yamaura  Kazuho 《Natural Hazards》2022,111(1):139-162

This paper constructs an evacuation decision-making model that takes cognitive dissonance into consideration. The purpose of this construction is to clarify the psychological mechanism for the evacuation behavior of residents during an emergency, based on Akerlof and Dickens (Akerlof and Dickens Am Econ Rev 72:307–319, 1982) "The economic consequences of cognitive dissonance". Specifically, we empirically explore people’s psychological mechanism (e.g., cognitive dissonance) for evacuation behavior when a tsunami disaster occurs. As a result, we show that the level of anxiety depends on the area where residents live and that the average anxiety of residents is mostly correlated with the level of damage of past disasters, and that it is affected also by the ages of residents. Since the level of anxiety largely affects an individual’s evacuation behavior, this result can indicate for what kinds of people intervention and assistance are required based on the level of anxiety. A high level of anxiety basically promotes evacuation. Since our results show that anxiety is increased by the experience of tsunamis, education having people virtually experience tsunamis may increase evacuation rates efficiently.

  相似文献   

14.
15.
The 27 November 1945 earthquake in the Makran Subduction Zone triggered a destructive tsunami that has left important problems unresolved. According to the available reports, high waves persisted along the Makran coast and at Karachi for several hours after the arrival of the first wave. Long-duration sea-level oscillations were also reported from Port Victoria, Seychelles. On the other hand, only one high wave was reported from Mumbai. Tide-gauge records of the tsunami from Karachi and Mumbai confirm these reports. While the data from Mumbai shows a single high wave, Karachi data shows that high waves persisted for more than 7 h, with maximum wave height occurring 2.8 h after the arrival of the first wave. In this paper, we analyze the cause of these persistent high waves using a numerical model. The simulation reproduces the observed features reasonably well, particularly the persistent high waves at Karachi and the single high wave at Mumbai. It further reveals that the persistent high waves along the Makran coast and at Karachi were the result of trapping of the tsunami-wave energy on the continental shelf off the Makran coast and that these coastally-trapped edge waves were trapped in the along-shore direction within a ∼300-km stretch of the continental shelf. Sensitivity experiments establish that this along-shore trapping of the tsunami energy is due to variations in the shelf width. In addition, the model simulation indicates that the reported long duration of sea-level oscillations at Port Victoria were mainly due to trapping of the tsunami energy over the large shallow region surrounding the Seychelles archipelago.  相似文献   

16.
The modeling of fracture networks is useful for fluid flow and rock mechanics studies. About 6600 fracture traces were recorded on drifts of a uranium mine in a granite massif. The traces have an extension of 0.20–20 m. The network was studied by fractal and by geostatistical methods but can be considered neither as a fractal with a constant dimension nor a set of purely randomly located fractures. Two kinds of generalization of conventional models can still provide more flexibility for the characterization of the network: (a) a nonscaling fractal model with variable similarity dimension (for a 2-D network of traces, the dimension varying from 2 for the 10-m scale to 1 for the centimeter scale, (b) a parent-daughter model with a regionalized density; the geostatistical study allows a 3-D model to be established where: fractures are assumed to be discs; fractures are grouped in clusters or swarms; and fracturation density is regionalized (with two ranges at about 30 and 300 m). The fractal model is easy to fit and to simulate along a line, but 2-D and 3-D simulations are more difficult. The geostatistical model is more complex, but easy to simulate, even in 3-D.This paper was presented at Emerging Concepts, MGUS-87 Conference, Redwood City, California, 13–15 April 1987.  相似文献   

17.
Selection of effective groundwater remediation scenarios is a complex issue that requires understanding of contaminants’ transport processes. The effectiveness of cleanup measures may be verified by fate and transport numerical modeling. The goal of this work was to present the usefulness of fate and transport modeling for planning, verification and fulfillment of effective groundwater remediation methods. Selection methodology was developed, which is based on results of numerical flow and transport modeling. A field site located in south-east Poland was selected as a case study, in which groundwater contamination of trichloroethene and tetrachloroethene was detected. The results indicated that “pump and treat” was the most effective among the studied remediation methods, followed by permeable reactive barrier and in situ chemical oxidation. Natural attenuation-based remediation was demonstrated to be the least suitable, as it requires the longest time to reach predefined remediation goals, principally due to low sorption capacity and unfavorable hydrogeochemical conditions for biodegradation. Fate and transport numerical modeling allowed simulating different remediation strategies, and thus the decision-making process was facilitated.  相似文献   

18.
This work developed models to identify optimal spatial distribution of emergency evacuation centers(EECs) such as schools, colleges, hospitals, and fire stations to improve flood emergency planning in the Sylhet region of northeastern Bangladesh.The use of location-allocation models(LAMs) for evacuation in regard to flood victims is essential to minimize disaster risk.In the first step, flood susceptibility maps were developed using machine learning models(MLMs), including: Levenberg–Marquardt back propagation(LM-BP) neural network and decision trees(DT) and multi-criteria decision making(MCDM) method.Performance of the MLMs and MCDM techniques were assessed considering the area under the receiver operating characteristic(AUROC) curve.Mathematical approaches in a geographic information system(GIS) for four well-known LAM problems affecting emergency rescue time are proposed: maximal covering location problem(MCLP), the maximize attendance(MA), p-median problem(PMP), and the location set covering problem(LSCP).The results showed that existing EECs were not optimally distributed, and that some areas were not adequately served by EECs(i.e., not all demand points could be reached within a 60-min travel time).We concluded that the proposed models can be used to improve planning of the distribution of EECs, and that application of the models could contribute to reducing human casualties, property losses, and improve emergency operation.  相似文献   

19.
城市洪涝模拟是当前国内外城市防洪减灾领域研究的热点。现有城市洪涝模拟方面的评述,主要依据城市洪涝过程或模拟计算方法进行分类讨论,缺乏基于应用需求的视角。随着应用需求日益深入,城市洪涝模拟应用场景日趋多样化和复杂化,不同模拟应用场景下,所关注的洪涝过程不同,采用的技术策略及其重点和难点也不同,脱离模拟应用场景很难辨析这些不同。依据模拟对象和关注变量,归纳总结出城市洪涝模拟的3种典型应用场景,即城市外洪模拟、城市雨洪模拟、城市内涝模拟;针对这3种典型模拟应用场景,分析相应的城市洪水演进模型、城市雨洪模型、半分布式暴雨内涝模型、全分布式暴雨内涝模型等4类模拟技术策略;辨析在不同模拟应用场景和技术策略下,不同模拟技术的组合方式及其特点与难点,以期从应用需求的角度对城市洪涝模拟技术进行全面的梳理,为城市洪涝模拟应用和研究提供一个新的视角。  相似文献   

20.
作为国土资源综合监测网络建设的基础性工作,国土资源综合监测网络优化工作尤为重要.本文综合分析了国土资源系统目前开展的各类监测工作内容及特点,首次确定了国土资源综合监测网络优化的主要对象,并进一步划分为点状监测网络和面状监测网络.在阐述综合监测网络优化思路的基础上,初次提出了国土资源综合监测网络优化的四项主要工作内容:(1)国土资源综合监测需求程度区划;(2)确定国土资源综合监测网络分区建设等级;(3)现有国土资源监测网络的综合评价;(4)国土资源综合监测网络分类优化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号