首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efforts to characterize population exposure to near-field tsunami threats typically focus on quantifying the number and type of people in tsunami-hazard zones. To develop and prioritize effective risk-reduction strategies, emergency managers also need information on the potential for successful evacuations and how this evacuation potential varies among communities. To improve efforts to properly characterize and differentiate near-field tsunami threats among multiple communities, we assess community variations in population exposure to tsunamis as a function of pedestrian travel time to safety. We focus our efforts on the multiple coastal communities in Grays Harbor and Pacific Counties (State of Washington, USA), where a substantial resident and visitor population is threatened by near-field tsunamis related to a potential Cascadia subduction zone earthquake. Anisotropic, path distance modeling is conducted to estimate travel times to safety, and results are merged with various population data, including residents, employees, public venues, and dependent-care facilities. Results suggest that there is substantial variability among communities in the number of people that may have insufficient time to evacuate. Successful evacuations may be possible in some communities assuming slow walking speeds, are plausible in others if travel speeds are increased, and are unlikely in another set of communities given the large distances and short time horizon. Emergency managers can use these results to prioritize the location and determine the most appropriate type of tsunami risk-reduction strategies, such as education and training in areas where evacuations are plausible and vertical-evacuation structures in areas where they are not.  相似文献   

2.
Recent disasters highlight the threat that tsunamis pose to coastal communities. When developing tsunami-education efforts and vertical-evacuation strategies, emergency managers need to understand how much time it could take for a coastal population to reach higher ground before tsunami waves arrive. To improve efforts to model pedestrian evacuations from tsunamis, we examine the sensitivity of least-cost-distance models to variations in modeling approaches, data resolutions, and travel-rate assumptions. We base our observations on the assumption that an anisotropic approach that uses path-distance algorithms and accounts for variations in land cover and directionality in slope is the most realistic of an actual evacuation landscape. We focus our efforts on the Long Beach Peninsula in Washington (USA), where a substantial residential and tourist population is threatened by near-field tsunamis related to a potential Cascadia subduction zone earthquake. Results indicate thousands of people are located in areas where evacuations to higher ground will be difficult before arrival of the first tsunami wave. Deviations from anisotropic modeling assumptions substantially influence the amount of time likely needed to reach higher ground. Across the entire study, changes in resolution of elevation data has a greater impact on calculated travel times than changes in land-cover resolution. In particular areas, land-cover resolution had a substantial impact when travel-inhibiting waterways were not reflected in small-scale data. Changes in travel-speed parameters had a substantial impact also, suggesting the importance of public-health campaigns as a tsunami risk-reduction strategy.  相似文献   

3.
Pedestrian evacuation modeling for tsunami hazards typically focuses on current land-cover conditions and population distributions. To examine how post-disaster redevelopment may influence the evacuation potential of at-risk populations to future threats, we modeled pedestrian travel times to safety in Seward, Alaska, based on conditions before the 1964 Good Friday earthquake and tsunami disaster and on modern conditions. Anisotropic, path distance modeling is conducted to estimate travel times to safety during the 1964 event and in modern Seward, and results are merged with various population data, including the location and number of residents, employees, public venues, and dependent care facilities. Results suggest that modeled travel time estimates conform well to the fatality patterns of the 1964 event and that evacuation travel times have increased in modern Seward due to the relocation and expansion of port and harbor facilities after the disaster. The majority of individuals threatened by tsunamis today in Seward are employee, customer, and tourist populations, rather than residents in their homes. Modern evacuation travel times to safety for the majority of the region are less than wave arrival times for future tectonic tsunamis but greater than arrival times for landslide-related tsunamis. Evacuation travel times will likely be higher in the winter time, when the presence of snow may constrain evacuations to roads.  相似文献   

4.
The 2014 Iyonada Earthquake, which occurred at 02:06 JST on 14 March, measured 6.2 on the Richter scale and originated in the Seto Inland Sea of Japan. To elucidate tsunami evacuation behavior, we examined two coastal communities in Kochi Prefecture, Okitsu and Mangyo, where residents evacuated to high ground in anticipation of a tsunami. In the event of a Nankai megathrust earthquake and tsunami, it is expected that a huge tsunami will be generated and these communities will be severely damaged. Before the Iyonada Earthquake, we had previously collected data about tsunami preparedness and evacuation plans from the residents of these communities, and after the earthquake, we conducted in-depth interviews and questionnaire surveys with the residents regarding the actual evacuation behaviors that they took. This enabled us to compare evacuation plans with evacuation behaviors. Results indicate that many residents responded quickly to the earthquake, either by immediately evacuating to emergency shelters on high ground or by preparing themselves for evacuation. Additionally, the earthquake revealed great differences between the prior evacuation plans and the actual situation of residents’ evacuation, such as specific triggers that significantly led residents to evacuate and the use of vehicles in evacuation.  相似文献   

5.
Awareness about the threats posed by different types of coastal disasters has increased throughout the world, as people are exposed to the nature of these hazards through media reports on events in distant countries. This has resulted in coastal residents being aware about the destructive power of tsunamis, despite no such events having taken place in their country in recent times. Regardless of this increased awareness, it has been hypothesized that there is still need for local governments to enact adequate policies to raise the awareness of local residents, for example, by holding regular evacuation drills. The present research presents a comparative assessment of tsunami awareness in two tourist destinations in Japan and the USA, which was derived through structured questionnaire surveys of beach users in the city of Kamakura and various coastal cities in Florida. The results show how despite relatively high level of awareness tsunamis still pose a considerable risk to each of the communities, for example, due to shortcoming in evacuation knowledge and infrastructure.  相似文献   

6.

Large near-field tsunamis pose a significant threat to the Canadian West Coast due to its proximity to the circum-Pacific belt where a significant tsunami-inducing earthquake event from the Cascadia subduction zone is expected. This study investigated the risks associated with such an event in terms of pedestrian evacuation needs and plans for the Town of Tofino, a small community located on the West Coast of Vancouver Island. The population-at-risk within the hazard zone and its ability to evacuate to safety is evaluated using anisotropic path-distance modelling. Mitigation measures, such as vertical evacuation buildings, are quantitatively evaluated. Site-specific inundation modelling was not performed as part of this study; tsunami hazard and safe zones were computed using a range of run-ups varying between 3 and 25 m. It was established that up to 80% of the population is within the maximum hazard zone considered. This evacuation modelling exercise indicates that a maximum of 13% of the population would have insufficient time to reach safety when using a mobility-impaired ambulatory speed. The use of three vertical evacuation buildings can reduce the risk of losing population in this category by 99%. Although some conservative assumptions were used (vertical datum at higher high water, reductions in safe zones by generalization process and mobility-impaired evacuation speeds), the evacuation potential is likely overestimated due to the coarseness of the topographic data used in the evacuation modelling and from an overestimated first wave arrival time. This is the first Canadian study which used anisotropic evacuation modelling to evaluate the vulnerability of a Canadian community to tsunami inundation.

  相似文献   

7.
A major tsunamigenic earthquake is expected in the near future along the coast of West Sumatra Province of Indonesia. In the city of Padang, the arrival time of the tsunami is expected to be ~30 min. Currently, there are approximately 400,000 people in the city living within the potential inundation zone. This study aimed to complement the existing research in appraising possible risk reduction interventions, specifically looking at enabling the timely evacuation of the area. This research, developed in consultation with national and local authorities, emergency planners and NGOs, analysed interventions for tsunami risk reduction in Padang through the development of a pedestrian and vehicular evacuation model and the appraisal of possible solutions to enhance the evacuation rates. Some of the conclusions from this research can be applied to other areas in Southeast Asia where the traffic patterns are similar to those in Padang and where the distance to safety is greater than 4–5 km. For the case of Padang, the results show that pedestrian evacuation is strongly preferable to vehicular evacuation due to the limited road capacity and the high population density. In the present situation, however, 70–80 % of the population in Padang could not evacuate within 30 min, even by foot. Common interventions such as widening roads and building bridges prove to be relatively ineffective in this case due to the large distance that has to be covered in a short time. These interventions would only have a decisive impact if a longer evacuation time was available (more than 60 min). In the case of Padang, the evacuation rate in the first 30 min is strongly dependent on the presence/absence of evacuation shelters, whose effectiveness is limited by the capacity of the structures. Building a few high-capacity and high-resilience structures such as evacuation hills is a more effective and robust evacuation strategy than constructing many small high-raised buildings. Even with evacuation structures, wider roads and bridges, about 20 % of the population would still be unable to reach safety by the time the tsunami arrives. This means about 70,000 people of Padang’s current population, which is rapidly increasing. The building of evacuation shelters may be a viable option for saving lives in the short term, but it is not a sustainable option in the medium to long term. It is therefore also necessary to set up and enforce regulations for land use planning that take into account the tsunami risk and prevent further urban development for the areas that may be affected by a tsunami.  相似文献   

8.
Wang  Zhenqiang  Jia  Gaofeng 《Natural Hazards》2021,105(2):2045-2071

Tsunami evacuation is an effective way to save lives from the near-field tsunami. Realistic evacuation simulation can provide valuable information for accurate evacuation risk assessment and effective evacuation planning. Agent-based modeling is ideal for tsunami evacuation simulation due to its capability of capturing the emergent phenomena and modeling the individual-level interactions among agents and the agents’ interactions with the environment. However, existing models usually neglect or simplify some important factors and/or mechanisms in tsunami evacuation. For example, uncertainties in seismic damages to the transportation network are not probabilistically considered (e.g., by simply removing the damaged links (roads/bridges) from the network). Typically a relatively small population (i.e., evacuees) is considered (due to computational challenges) while neglecting population mobility. These simplifications may lead to inaccurate estimation of evacuation risk. Usually, only single traffic mode (e.g., on foot or by car) is considered, while pedestrian speed adjustment and multi-modal evacuation (e.g., on foot and by car) are not considered concurrently. Also, pedestrian–vehicle interaction is usually neglected in the multi-modal evacuation. To address the above limitations, this study proposes a novel and more realistic agent-based tsunami evacuation model for tsunami evacuation simulation and risk assessment. Uncertainties in seismic damages to all links in the transportation network as well as uncertainties in other evacuation parameters are explicitly modeled and considered. A novel and more realistic multi-modal evacuation model is proposed that explicitly considers the pedestrian–vehicle interaction, walking speed variability, and speed adjustment for both the pedestrian and car according to traffic density. In addition, several different population sizes are used to model population mobility and its impact on tsunami evacuation risk. The proposed model is applied within a simulation-based framework to assess the tsunami evacuation risk assessment for Seaside, Oregon.

  相似文献   

9.
基于波浪水槽实验,以沿海公路为对象,对海啸波作用下建筑物局部冲刷机理开展研究。实验采用1/10与1/20的组合坡度,选取N波作为入射波。实验对波高、波浪的上爬、回落和水跃过程、每个波作用后的地形进行了测量和记录。实验结果表明,N波作用下地形发生冲淤变化,在回落水流所形成的螺旋流作用下,路基向海侧形成明显的冲刷坑。路基所在位置是最主要因素,波高是次要因素,路基深度影响较小。路基位于滩肩侵蚀发生处,则最大冲刷深度相对较大。  相似文献   

10.
Method to determine the locations of tsunami vertical evacuation shelters   总被引:1,自引:1,他引:0  
The 2004 Indian Ocean tsunami and the 2011 Great Tohoku Japan earthquake and tsunami focused a great deal of the world??s attention on the effect of tsunamis on buildings and infrastructure. When a tsunami impacts structures in a coastal community, the structures are often not strong enough to withstand the forces and may collapse. Therefore, to maximize the survival probability, people evacuate to higher ground or move outside the inundation zone. However, this is not always possible because of short warning times for near-field tsunamis. Thus, sheltering-in-place or ??sheltering-near-place?? using vertical evacuation should be considered as an alternative approach to lateral evacuation from a tsunami inundation zone. This paper presents the method and results of a study to develop and demonstrate a methodology that applied genetic optimization to determine optimal tsunami shelter locations with the goal of reducing evacuation time, thereby maximizing the probability of survival for the population in a coastal community. The City of Cannon Beach, Oregon, USA, was used as an illustrative example. Several cases were investigated ranging from a single shelter to multiple shelters with locations of high elevation already in place near the city. The method can provide decision-support for the determination of locations for tsunami vertical evacuation shelters. The optimum location of the shelter(s), which was found to vary depending on the number of shelters considered, can reduce the evacuation time significantly, thereby reducing the number of fatalities and increasing the safety of a community.  相似文献   

11.
For the testing of the effect on the tsunami prevention facilities, a simplified methodfor tsunami risk assessment was suggested without wave run-up analysis. This methodis proposed using calculated offshore tsunami waveform and field reconnaissance suchas the seawall height, time necessary for residents' evacuation and tsunami warninginsurance. Then, two normalized values are evaluated; one is the ratio of calculatedmaximum tsunami height to seawall height, the other is the ratio of time betweentsunami over-topping and evacuation completion to total time required for evacuation.These two values are used to qualitatively estimate the safety of residents and the effectof tsunami prevention facilities, eliminating the necessity to compute complicatedtsunami run-up onshore.  相似文献   

12.
It is necessary for China to establish a feasible method to verify whether an emergency evacuation plan (EEP) provides timely evacuation under the threat of flooding as a result of dam failure. Based on simulating the inundation area resulting from failure of the Huaxi Dam, this paper puts forward a quantitative approach to assess the effectiveness of an EEP by estimating the evacuation clearance times. Differences between urban and rural areas are considered, and two transportation modes are selected. Total evacuation clearance times in rural and urban areas are 135 and 80?min, respectively. Results show that total evacuation clearance times are longer than the time it takes for the flood wave to reach some communities in the area. The paper also makes some suggestions on how to decrease the total clearance time and thus enhance the effectiveness of the EEP for the Huaxi Dam.  相似文献   

13.
Hurricane evacuations in coastal counties have been reviewed and analyzed for the role of household preparedness and decisions before and during a disaster. However, one of the several emerging problems in the hurricane evacuation is transportation. Transportation issues have become more important in coastal evacuations as traffic problems impinge on people’s ability to get out of harm’s way and ultimately influence their decisions to evacuate. To add to the complexity, when families evacuate in multiple vehicles, it leads to additional vehicular traffic on roads and increased pressure on the transportation systems. However, little has been investigated on the characteristics that influence a household’s decision to evacuate in one or multiple vehicles. The outcome from such an analysis can help both the emergency managers and the transportation planners to targets groups that report taking more vehicles to develop policies that result in efficient evacuation. This study investigates the responses of evacuees surveyed after Hurricane Rita in the counties of Galveston, Brazoria and Harris County. The ordinary least square regression analysis revealed that access to transportation characteristics of a household such as number of registered vehicles in a household and number of eligible drivers was positively and significantly related to evacuating in more vehicles. Meanwhile, the risk of reaching destination safely was negatively related to taking more vehicles for evacuation even though both the risk index and deterrence index were positively significant. The time of decision and evacuation did not report any statistical significance.  相似文献   

14.
Tsunami hazard in coastal areas susceptible to flooding, although reduced (in terms of probability of occurrence), may pose a high risk. Therefore, in these areas, a detailed evacuation planning of the affected population is required as a risk mitigation measure. The knowledge and enforcement of evacuation routes may reduce the population vulnerability, making it more resilient and reducing risk. This paper presents a GIS approach for modelling evacuation routes based on the optimal path search problem, of the graph theory, which is implemented on ArcCasper tool. The methodology proposed considers the elements involved in the evacuation process, the worst credible tsunami inundation scenario (hazard extent and travel time), the number of people that needs to be evacuated in different time scenarios, the safe areas or destination points of the evacuation routes, the roads network characteristics and finally the time available to evacuate. The knowledge of those elements allows predicting some possible outcomes of the evacuation, such as the arrival time of the evacuees to a shelter and the identification of congestion hot spots resulting from the application of a flocking model which simulates the path to be used by evacuees avoiding obstacles. The municipality of Cascais was used to test the methodology proposed in this study. Cascais is one of the largest urban centres located about 25 km west of Lisbon, Portugal, with a high density of infrastructure along the coastline whereby most of the population and economic activities are exposed to a tsunami. The results, presented in the form of maps, allow identifying the optimal evacuation routes as well as the unfeasible routes. This crucial information could be used to the evacuation optimization regarding the location of meeting points and vertical shelters as well as to improve the accessibility of the areas to be evacuated.  相似文献   

15.
A tsunameter (soo-NAHM-etter) network has been established in the Pacific by the National Oceanic and Atmospheric Administration. Named by analogy with seismometers, the NOAA tsunameters provide early detection and real-time measurements of deep-ocean tsunamis as they propagate toward coastal communities, enabling the rapid assessment of their destructive potential. Development and maintenance of this network supports a State-driven, high-priority goal of the U.S. National Tsunami Hazard Mitigation Program to improve the speed and reliability of tsunami warnings. The network is now operational, with excellent reliability and data quality, and has proven its worth to warning center decision-makers during potentially tsunamigenic earthquake events; the data have helped avoid issuance of a tsunami warning or have led to cancellation of a tsunami warning, thus averting potentially costly and hazardous evacuations. Optimizing the operational value of the network requires implementation of real-time tsunami forecasting capabilities that integrate tsunameter data with numerical modeling technology. Expansion to a global tsunameter network is needed to accelerate advances in tsunami research and hazard mitigation, and will require a cooperative and coordinated international effort.  相似文献   

16.
Residential development in fire-prone areas of the western United States is a growing concern. The steady addition of homes to this region places more people and property at risk each year. In many areas housing is increasing without commensurate improvements in the road network, particularly in regards to the number, capacity and arrangement of community exit roads. This results in steadily increasing minimum evacuation times, as each additional household contributes to potential evacuation travel-demand in a wildfire. The goal of this research is to perform a comprehensive geographic search of the western U.S. for communities in wildfire-prone areas that may represent difficult evacuations due to constrained egress. The problem is formulated as a spatial search for fire-prone communities with a high ratio of households-to-exits and solved using methods in spatial optimization and geographic information systems (GIS). The results reveal an initial inventory and ranking of the most difficult wildfire evacuations in the West. These communities share a unique vulnerability in that all residents may not be able to evacuate in scenarios with short warning time. For this reason they represent prime candidates for emergency planning, and monitoring their development is a growing need.  相似文献   

17.
Recent tsunamis affecting the West Coast of the USA have resulted in significant damage to ports and harbors, as well as to recreational and commercial vessels attempting to escape the tsunami. With the completion of tsunami inundation simulations for a distant tsunami originating from the Aleutian Islands and a locally generated tsunami on the Cascadia subduction zone (CSZ), the State of Oregon is now able to provide guidance on the magnitudes and directions of the simulated currents for the Oregon coast and shelf region. Our analyses indicate that first wave arrivals for an Aleutian Island event would take place on the north coast,?~?3 h 40 min after the start of the earthquake,?~?20 min later on the southern Oregon coast. The simulations demonstrated significant along-coast variability in both the tsunamis water levels and currents, caused by localized bathymetric effects (e.g., submarine banks and reefs). A locally generated CSZ event would reach the open coast within 7–13 min; maximum inundation occurs at?~?30–40 min. As the tsunami current velocities increase, the potential for damage in ports and harbors correspondingly increases, while also affecting a vessels ability to maintain control out on the ocean. Scientific consensus suggests that tsunami currents?<?1.54 m/s are unlikely to impact maritime safety in ports and harbors. No such guidance is available for boats operating on the ocean, though studies undertaken in Japan suggest that velocities in the region of 1–2 m/s may be damaging to boats. In addition to the effects of currents, there is the added potential for wave amplification of locally generated wind waves interacting with opposing tsunami currents in the offshore. Our analyses explore potential wave amplification effects for a range of generic sea states, ultimately producing a nomogram of wave amplification for a range of wave and opposing current conditions. These data will be useful for US Coast Guard and Port authorities as they evaluate maritime tsunami evacuation options for the Oregon coast. Finally, we identify three regions of hazard (high, moderate, and low) across the Oregon shelf, which can be used to help guide final designation of tsunami maritime evacuation zones for the coast.  相似文献   

18.
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a State/Federal partnership created to reduce tsunami hazards along U.S. coastlines. Established in 1996, NTHMP coordinates the efforts of five Pacific States: Alaska, California, Hawaii, Oregon, and Washington with the three Federal agencies responsible for tsunami hazard mitigation: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey (USGS). In the 7 years of the program it has, 1. established a tsunami forecasting capability for the two tsunami warning centers through the combined use of deep ocean tsunami data and numerical models; 2. upgraded the seismic network enabling the tsunami warning centers to locate and size earthquakes faster and more accurately; 3. produced 22 tsunami inundation maps covering 113 coastal communities with a population at risk of over a million people; 4. initiated a program to develop tsunami-resilient communities through awareness, education, warning dissemination, mitigation incentives, coastal planning, and construction guidelines; 5. conducted surveys that indicate a positive impact of the programs activities in raising tsunami awareness. A 17-member Steering Group consisting of representatives from the five Pacific States, NOAA, FEMA, USGS, and the National Science Foundation (NSF) guides NTHMP. The success of the program has been the result of a personal commitment by steering group members that has leveraged the total Federal funding by contributions from the States and Federal Agencies at a ratio of over six matching dollars to every NTHMP dollar. Twice yearly meetings of the steering group promote communication between scientists and emergency managers, and among the State and Federal agencies. From its initiation NTHMP has been based on the needs of coastal communities and emergency managers and has been results driven because of the cycle of year-to-year funding for the first 5 years. A major impact of the program occurred on 17 November 2003, when an Alaskan tsunami warning was canceled because real-time, deep ocean tsunami data indicated the tsunami would be non-damaging. Canceling this warning averted an evacuation in Hawaii, avoiding a loss in productivity valued at $68M.  相似文献   

19.
Deterministic analysis of local tsunami generated by subduction zone earthquakes demonstrates the potential for extensive inundation and building damage in Napier, New Zealand. We present the first high-resolution assessments of tsunami inundation in Napier based on full simulation from tsunami generation to inundation and demonstrate the potential variability of onshore impacts due to local earthquakes. In the most extreme scenario, rupture of the whole Hikurangi subduction margin, maximum onshore flow depth exceeds 8.0 m within 200 m of the shore and exceeds 5.0 m in the city centre, with high potential for major damage to buildings. Inundation due to single-segment or splay fault rupture is relatively limited despite the magnitudes of MW 7.8 and greater. There is approximately 30 min available for evacuation of the inundation zone following a local rupture, and inundation could reach a maximum extent of 4 km. The central city is inundated by up to three waves, and Napier Port could be inundated repeatedly for 12 h. These new data on potential flow depth, arrival time and flow kinematics provide valuable information for tsunami education, exposure analysis and evacuation planning.  相似文献   

20.
Tsunamis are among the most destructive and lethal of coastal hazards. These are time-specific events, and despite directly affecting a narrow strip of coastline, a single occurrence can have devastating effects and cause massive loss of life, especially in urbanized coastal areas. In this work, in order to consider the time dependence of population exposure to tsunami threat, the variation of spatio-temporal population distribution in the daily cycle is mapped and analyzed in the Lisbon Metropolitan Area. High-resolution daytime and nighttime population distribution maps are developed using ‘intelligent dasymetric mapping,’ that is, applying areal interpolation to combine best-available census data and statistics with land use and land cover data. Workplace information and mobility statistics are considered for mapping daytime distribution. In combination with a tsunami hazard map, information on infrastructure, land use and terrain slope, the modeled population distribution is used to assess people’s evacuation speed, applying a geospatial evacuation modeling approach to the city of Lisbon. The detailed dynamic population exposure assessment allows producing both daytime and nighttime evacuation time maps, which provide valuable input for evacuation planning and management. Results show that a significant amount of population is at risk, and its numbers increase dramatically from nighttime to daytime, especially in the zones of high tsunami flooding susceptibility. Also, full evacuation can be problematic in the daytime period, even if initiated immediately after a major tsunami-triggering earthquake. The presented approach greatly improves tsunami risk assessment and can benefit all phases of the disaster management process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号