共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites 总被引:9,自引:7,他引:9
A method for the estimation of the phase center variations of GPS satellite antennas using global GPS data is presented. First estimations have shown an encouraging repeatability from day to day and between satellites of the same block. Thus, two different satellite antenna patterns for Block II/IIA and for Block IIR with a range of about 4 cm and an accuracy of less than 1 mm could be found. The present approach allows the creation of a consistent set of receiver and satellite antenna patterns and phase center offsets. Thereby, it is possible to switch from relative to absolute phase center variations without a scale problem in global networks. This changeover has an influence on troposphere parameters, reduces systematic effects due to uncorrect antenna modeling and should diminish the elevation dependence of GPS results.
AcknowledgmentsThe authors thank Prof. G. Seeber (University of Hannover) and Dr. G. Wübbena (Geo++ GmbH) and their groups for their kindness in making available the absolute field calibration results derived from robot measurements. 相似文献
2.
GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne–Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases. 相似文献
3.
Results of the estimation of azimuth-dependent phase center variations (PCVs) of GPS satellite antennas using global GPS data
are presented. Significant variations of up to ±3–4 mm that are demonstrated show excellent repeatability over eight years.
The application of the azimuthal PCVs besides the nadir-dependent ones will lead to a further reduction in systematic antenna
effects. In addition, the paper focuses on the benefit of a possible transition from relative to absolute PCVs. Apart from
systematic changes in the global station coordinates, one can expect the GPS results to be less dependent on the elevation
cut-off angle. This, together with the significant reduction of tropospheric zenith delay biases between GPS and VLBI, stands
for an important step toward more consistency between different space geodetic techniques. 相似文献
4.
GPS天线相位中心变化及测试 总被引:3,自引:1,他引:3
对GPS天线相位中心随卫星变化的情况及减小和消除天线相位中心误差的方法进行了阐述 ,并详细介绍了对两种型号GPS天线相位中心变化进行比较和测试的结果 相似文献
5.
Driven by the comprehensive modernization of the GLONASS space segment and the increased global availability of GLONASS-capable
ground stations, an updated set of satellite-specific antenna phase center corrections for the current GLONASS-M constellation
is determined by processing 84 weeks of dual-frequency data collected between January 2008 and August 2009 by a worldwide
network of 227 GPS-only and 115 combined GPS/GLONASS tracking stations. The analysis is performed according to a rigorous
combined multi-system processing scheme providing full consistency between the GPS and the GLONASS system. The solution is
aligned to a realization of the International Terrestrial Reference Frame 2005. The estimated antenna parameters are compared
with the model values currently used within the International GNSS Service (IGS). It is shown that the z-offset estimates are on average 7 cm smaller than the corresponding IGS model values and that the block-specific mean value
perfectly agrees with the nominal GLONASS-M z-offset provided by the satellite manufacturer. The existence of azimuth-dependent phase center variations is investigated
and uncertainties in the horizontal offset estimates due to mathematical correlations and yaw-attitude modeling problems during
eclipse seasons are addressed. Finally, it is demonstrated that the orbit quality benefits from the updated GLONASS-M antenna
phase center model and that a consistent set of satellite antenna z-offsets for GPS and GLONASS is imperative to obtain consistent GPS- and GLONASS-derived station heights. 相似文献
6.
Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations 总被引:1,自引:0,他引:1
Climatology of column-integrated atmospheric water vapor over Spain has been carried out by means of three techniques: soundings,
sun photometers and GPS receivers. Comparing data from stations equipped with more than one of these instruments, we found
that a large discontinuity occurred on November 6, 2006, in the differences between the data series from GPS receivers and
those from the other two techniques. Prior to that date, the GPS data indicate a wet bias of 2–3 mm for all stations when
compared with sounding or photometer data, whereas after that date this bias practically reduces to zero. The root mean square
error also decreases about half of its value. On November 6, 2006, the International GNSS Service adopted an absolute calibration
model for the antennas of the GPS satellites and receivers instead of the relative one. This change is expected to be an improvement,
increasing the accuracy of station position determination and consequently benefiting post-processing products such as zenith
total delay from which the atmospheric water vapor content is calculated. 相似文献
7.
8.
Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination 总被引:7,自引:5,他引:7
Adrian Jäggi R. Dach O. Montenbruck U. Hugentobler H. Bock G. Beutler 《Journal of Geodesy》2009,83(12):1145-1162
Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with
on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning
System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations,
where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses.
Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver
and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase
center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models
were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for
the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE
and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations.
We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently
achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field
multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic
carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies
for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact
on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved
from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact
of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO
positions. 相似文献
9.
Absolute calibration of GPS antennas: laboratory results and comparison with field and robot techniques 总被引:5,自引:2,他引:5
A critical assessment of the accuracy of GPS antenna calibration is most effectively done by comparison between different calibration methods. We present new chamber calibrations of five different GPS receiver antenna types in an anechoic chamber and a comparison of an individual antenna calibrated by the absolute field calibration technique with robot mount of IfE/GEO++. The accuracy is described using standard error parameters which allow the characterization of the quality of different antennas. The results validate the absolute calibration methods at the 1-mm level and confirm the presence of significant variations in quality between antennas of different design. For the antenna pattern we directly use the measured phase variations and do not have to fit any functions for the chamber calibrations. We include the results of an earlier test made with a set of identical antennas calibrated at five different institutions: two using the absolute field technique with robot mount and three others applying the standard field calibration with reference antenna. 相似文献
10.
11.
天线相位中心改正对GPS精密单点定位的影响 总被引:1,自引:0,他引:1
GPS卫星与接收机由于自身特性以及机械加工等原因,导致其质量中心与相位中心不重合而产生相位中心误差,进而对GPS精密单点定位产生一定影响。介绍GPS天线相位中心偏移(PCO)、变化(PCV)的原理,并分析PCO、PCV,以及不同模型改正对GPS精密单点定位的影响。结果表明,在GPS精密单点定位中,天线相位中心改正不容忽略:在平面方向上,天线相位中心改正对定位影响较小,仅为毫米级;在高程方向上,天线相位中心改正对定位影响较大,可达厘米级;与相对中心改正模型相比,绝对相位中心改正模型精度更高。 相似文献
12.
13.
R. Dach G. Beutler U. Hugentobler S. Schaer T. Schildknecht T. Springer G. Dudle L. Prost 《Journal of Geodesy》2003,77(1-2):1-14
A joint time-transfer project between the Astronomical Institute of the University of Berne (AIUB) and the Swiss Federal
Office of Metrology and Accreditation (METAS) was initiated to investigate the power of the time transfer using GPS carrier
phase observations. Studies carried out in the context of this project are presented. The error propagation for the time-transfer
solution using GPS carrier phase observations was investigated. To this purpose a simulation study was performed. Special
interest was focussed on errors in the vertical component of the station position, antenna phase-center variations and orbit
errors. A constant error in the vertical component introduces a drift in the time-transfer results for long baselines in east–west
directions. The simulation study was completed by investigating the profit for time transfer when introducing the integer
carrier phase ambiguities from a double-difference solution. This may reduce the drift in the time-transfer results caused
by constant vertical error sources. The results from the present time-transfer solution are shown in comparison to results
obtained with independent time-transfer techniques. The interpretation of the comparison benefits from the investigations
of the error propagation study. Two types of solutions are produced on a regular basis at AIUB: one based on the rapid orbits
from CODE, the other on the CODE final orbits. The rapid solution is available the day after the observations and has nearly
the same quality as the final solution, which has a latency of about one week. The differences between these two solutions
are below the nanosecond level. The differences from independent time-transfer techniques such as TWSTFT (two-way satellite
time and frequency transfer) are a few nanoseconds for both products.
Received: 15 November 2001 / Accepted: 6 September 2002
Correspondence to:R. Dach 相似文献
14.
GPS接收机噪声对天线相位中心检测的影响分析 总被引:3,自引:0,他引:3
利用四天的零基线观测数据,截取不同时间长度的数据段,解算出北方向、东方向、高程方向的偏差量△N、△E、△U,对这些偏差量进行统计分析和误差分析。 相似文献
15.
16.
17.
18.
Adaptive filtering of continuous GPS results 总被引:2,自引:0,他引:2
An adaptive finite-duration impulse response filter, based on a least-mean-square algorithm, has been used to mitigate multipath
effects, and to derive tectonic and fault movement signals from continuous global positioning system (CGPS) data. By applying
the filter on both pseudo-range and carrier-phase multipath sequences from CGPS observations on consecutive days, multipath
models have been reliably derived. The standard deviations of residual time series are reduced to about one-quarter on pseudo-range
and to about one-half on carrier phase. The adaptive filter is then used to process baseline solutions from a five-station
array. Tectonic and fault movements have been resolved, which are in good agreement with previous studies involving many more
CGPS stations.
Received: 11 February 2000 / Accepted: 28 June 2000 相似文献
19.
Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas 总被引:10,自引:16,他引:10
Ralf Schmid Peter Steigenberger Gerd Gendt Maorong Ge Markus Rothacher 《Journal of Geodesy》2007,81(12):781-798
The development and numerical values of the new absolute phase-center correction model for GPS receiver and satellite antennas, as adopted by the International GNSS (global navigation satellite systems) Service, are presented. Fixing absolute receiver antenna phase-center corrections to robot-based calibrations, the GeoForschungsZentrum Potsdam (GFZ) and the Technische Universität München reprocessed more than 10 years of GPS data in order to generate a consistent set of nadir-dependent phase-center variations (PCVs) and offsets in the z-direction pointing toward the Earth for all GPS satellites in orbit during that period. The agreement between the two solutions estimated by independent software packages is better than 1 mm for the PCVs and about 4 cm for the z-offsets. In addition, the long time-series facilitates the study of correlations of the satellite antenna corrections with several other parameters such as the global terrestrial scale or the orientation of the orbital planes with respect to the Sun. Finally, completely reprocessed GPS solutions using different phase-center correction models demonstrate the benefits from switching from relative to absolute antenna phase-center corrections. For example, tropospheric zenith delay biases between GPS and very long baseline interferometry (VLBI), as well as the drift of the terrestrial scale, are reduced and the GPS orbit consistency is improved. 相似文献
20.
CAI Changsheng 《地球空间信息科学学报》2007,10(2):96-99
The regional ionospheric model is adopted to determine satellite-plus-receiver differential delay. The satellite-plus-receiver differential delay is estimated as constant values for each day. Dual-frequency GPS pseudo-ranges observables are used to compute vertical TEC (VTEC). All the monthly mean VTEC profiles are represented by graphs using GPS data of the Beijing IGS site between 2000 and 2004. The monthly averaged values and amplitudes of VTEC are also represented by graphs. The results indicate that the VTEC has seasonal dependency. The monthly averaged values and amplitudes of VTEC in 2000 are about 2 times larger than that in 2004. The maximum VTEC values are observed in March and April, while the minimum VTEC values are observed in December. The seasonal variations trend is found to be similar after polynomial fitting between 2000 and 2004. 相似文献