首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrated photoelectric measurements of the equivalent widthW H, the [Oiii]/H ratio and the H emission line flux were obtained for 30Hii regions in the SMC. Physical properties of theHii regions and their ionizing stellar associations were derived. Some aspects of the recent star formation in the SMC and the evolution ofHii regions are discussed.  相似文献   

2.
The stability of magnetic flux tubes embedded vertically in a convection zone is investigated. For thin tubes, the dominant instability is of the convective type, i.e. it is driven by buoyancy forces associated with displacements along the tube. The stability is determined by = 8P/B 2; if c the tube is convectively stable, otherwise it is unstable, where the critical value c depends on the stratification of the convection zone. For a solar convection zone model, c = 1.83, corresponding to a magnetic field strength of 1350 G at the surface of the Sun. It is concluded that the flux tubes making up the small scale field of the Sun are probably hydrodynamically stable.In tubes with > c, the instability is expected to transform the tube either into a state of vanishing surface field strength (in the case of an upward flow), or one with a field strength higher than the original value (if the instability sets in as a downward flow). Following Parker, we suggest that this effect is related to the concentrated nature of the observed solar fields.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

3.
The synthetic equivalent width (W H) of the line H in emission is obtained for Hii regions opaque to the Lyman photon flux, with embedded OB associations with different initial chemical compositions and initial mass functions. The variation ofW H as a function of the evolution of the ionizing stars is analysed. The observations ofW H for M33, M101, and M51 by Searle (1971) are discussed.  相似文献   

4.
Disturbances in the heat flow in the solar convection zone are calculated with a turbulent thermal diffusion coefficient based on a mixing length approximation. As a consequence of the radiative boundary condition at the surface and the strong increase of the diffusion coefficient with depth, the convection zone resembles a thermally superconducting shell enclosed between a thin surface layer and an interior core of low thermal conductivity. Thermal disturbances originating in the convection zone do not penetrate into the interior, and penetrate only weakly through the solar surface. A thermally isolating obstacle buried entirely in the convection zone casts a shadow of reduced temperature at the solar surface; the brightening surrounding this shadow is undetectable. The shadow is weak unless the object is located close to the surface (less than 2000 km). Assuming a sunspot to be an area of reduced thermal conductivity which extends a finite depth into the convection zone, the heat flow around this obstacle is calculated. The heat flux blocked below the spot (missing flux) spreads over a very extended area surrounding the spot. The brightening corresponding to this missing flux is undetectable if the reduction of the thermal conductivity extends to a depth greater than 1000 km. It is concluded that no effect other than a decrease of the convective efficiency is needed to explain the temperature change observed at the solar surface in and around a sunspot. The energy balance is calculated between magnetic flux tubes, oriented vertically in the solar surface, (magnetic elements in active regions and the quiet network) and their surroundings. Near the visible surface radiation enters the tube laterally from the surrounding convection zone. The heating effect of this influx is important for small tubes (less than a few arcseconds). Due to this influx tubes less than about 1 in diameter can appear as bright structures irrespective of the amount of heat conveyed along the tube itself. Through the lateral influx, small tubes such as are found in the quiet network act as little leaks in the solar surface through which an excess heat flux escapes from the convection zone.  相似文献   

5.
6.
The dynamic response of the solar atmosphere is examined with the use of self-consistent numerical solutions of the complete set of nonlinear, two-dimensional, hydromagnetic equations. Of particular interest are the magnetic energy build-up and the velocity field established by emerging flux at the base of an existing magnetic loop structure in a stationary atmosphere. For a plasma with a relatively low beta ( = 0.03) the magnetic energy build-up is approximately twice that of the kinetic energy, while the build-up in magnetic energy first exceeds but is eventually overtaken by the kinetic energy for a plasma with an intermediate beta ( = 3). The increased magnetic flux causes the plasma to flow upward near the loop center and downward near the loop edges for the low beta plasma. The plasma eventually flows downward throughout the lower portion of the loop carrying the magnetic field with it for the intermediate beta plasma. It is hypothesized that this latter case, and possibly the other case as well, may provide a reasonable simulation of the disappearance of prominences by flowing down into the chromosphere (a form of disparition brusque).The National Center for Atmospheric Research is sponsored by the National Science Foundation.Now at the School of Science and Engineering, The University of Alabama in Huntsville, Huntsville, Alabama 35807.  相似文献   

7.
A simple matching technique is developed which allows us to compute the response of the solar envelope to perturbations which occur within the solar convective region, and in timescales of importance to climate. This technique is applied to perturbation of the convective efficiency (-mechanism), and of the non-gas component of the pressure in different regions of the convection zone (-mechanism). The results indicate that while either perturbation affects the solar luminosity, the -mechanism has almost no effect on the solar outer radius, regardless of the affected region, whereas the -mechanism produces radius changes which may be large if the location of perturbation is deep enough.  相似文献   

8.
A solar flare with both H and Fe i 5324 emissions was observed in AR 7529 (S13, E65) on 24 June, 1993 at the Bejing Astronomical Observatory. Our calculations show that the Fe i 5324 emission region of the flare was located in the low photosphere at a height of about 180 km above 5000 = 1, which is lower than many previous studies of white-light flares. To study a Fe i 5324 flare, which represents a kind of extreme case in solar flares, would be useful for clarifying some arguments in the researches of white-light flares as well as for understanding the mechanism of solar flares.The synthetic analyses from vairous features of the flare lead to the following possible exciting mechanism of the Fe i 5324 flare: owing to the flow of energetic electrons from the corona and probably also the thermal conduction downward into the lower atmosphere, a condensation with a temperature higher than that below it was formed near the transition region. Then the low photosphere was heated through backwarming. The Fe i 5324 flare occurred as an indicator of the excitation in the low photosphere.  相似文献   

9.
We study the possibility that large flux differences between the poles and the equator at the bottom of the solar convective zone are compatible with the small differences observed at the surface. The consequences of increasing the depth of the convective zone due to overshooting are explored.A Boussinesq model is used for the convective zone and we assume that the interaction of the global convection with rotation is modelled through a convective flux coefficient whose perturbed part is proportional to the local Taylor number. The numerical integration of the equations of motion and energy shows that coexistence between large pole-equator flux differences at the bottom and small ones at the surface is possible if the solar convective zone extends to a depth of 0.4R . The angular velocity distribution inside the convective zone is in agreement with the -dynamo theories of the solar cycle.  相似文献   

10.
An energy method is used to determine a condition for local instability of field lines in magnetohydrostatic equilibrium which are rooted in the photosphere. The particular equilibrium studied is isothermal and two-dimensional and may model a coronal arcade of loops where variations along the axis of the arcade are weak enough to be ignorable. If line tying conditions are modelled by perturbations that vanish on the photosphere, then, when the field is unsheared, the condition for stability is necessary and sufficient. However, when the axial field component is non-zero, so that the field is sheared, the stability condition is only sufficient.It is found that when < 0.34 the equilibrium is stable. When = 0.34 a magnetic neutral line appears at the photosphere and it is marginally stable. When > 0.34 a magnetic island is present and all the field lines inside the island are unstable as well as some beyond it. As increases, the size of the island and the extent of unstable field lines increase. The effect of the instability is likely to be to create small-scale filamentation in the solar corona and to enhance the global transport coefficients.  相似文献   

11.
Julius Feit 《Solar physics》1971,17(2):473-490
An analysis of solar flare data indicates that the graph of log(nt 3/(2–)) deviates late in the solar event from the straight line predicted for the infinite, unbounded interplanetary medium. It is shown by mathematical analysis, utilizing a model based on the radial diffusion coefficient D = Mr , with 1, that the deviation can be ascribed to the loss of flare particles through an external boundary at about 5–6 AU from the Sun. An inner region terminating at 5–6 AU, followed by an extensive region of increasingly less resistance to the diffusion of flare particles is also feasible and it is shown that measurements taken at the Earth cannot predict the extent of this outer region. The results are applicable to either the isotropic or highly anisotropic models. The constant diffusion model is shown to be inadequate since it requires a boundary 1.5 AU from the Sun. In view of the present and previous studies of solar flare data, it is asserted that the fundamental principle governing the diffusion of solar flare particles through interplanetary space is the radial diffusion coefficient mode of propagation.  相似文献   

12.
L. C. Lee  Y. Lin  G. S. Choe 《Solar physics》1996,163(2):335-359
Magnetic reconnection can take place between two plasma regions with antiparallel magnetic field components. In a time-dependent reconnection event, the plasma outflow region consists of a leading bulge region and a trailing reconnection layer. Magnetohydrodynamic (MHD) discontinuities, including rotational discontinuities, can be formed in both the bulge region and the trailing layer. In this paper, we suggest that the rotational discontinuities observed in the solar wind may be generated by magnetic reconnection associated with microflares in coronal holes. The structure of the reconnection layer is studied by solving the one-dimensional Riemann problem for the evolution of an initial current sheet after the onset of magnetic reconnection as well as carrying out two-dimensional MHD simulations. As the emerging magnetic flux reconnects with ambient open magnetic fields in the coronal hole, rotational discontinuities are generated in the region with open field lines. It is also found that in the solar corona with a low plasma beta ( 0.01), the magnetic energy is converted through magnetic reconnection mostly into the plasma bulk-flow energy. Since more microflares will generate more rotational discontinuities and also supply more energy to the solar wind, it is expected that the number of rotational discontinuities observed in the solar wind would be an increasing function of solar wind speed. The observation rate of rotational discontinuities generated by microflares is estimated to be dN RD/dt - f/63 000 s (f > 1) at 1 AU. The present mechanism favors the generation of rotational discontinuities with a large shock normal angle.  相似文献   

13.
New observations of solar spicules at Pulkovo, made simultaneously in 4 spectral regions, are described. The profiles of the H, D3, H, H and K lines were derived for 23 spicules.The spicules occur usually in narrow bundles and can be resolved into separate objects only due to a dispersion of radial velocities inside the bundle. The spicules in D3 are diffuse with faint interspicular emission.The emission of hydrogen, helium and Caii originate in different parts of spicules with different radial and turbulent velocities. The core of a spicule with Caii emission is a narrow rope several tens of km in diameter for the normal section. The optical thickness of a spicule in H is approximately 1.0 and the atomic density varies from 1011 to 1012 cm–3.The helium emission in spicules seems to be produced by different mechanisms, one of them being the external radiation of corona and subcoronal matter.The model of a solar spicule is discussed.  相似文献   

14.
H. Washimi  T. Sakurai 《Solar physics》1993,143(1):173-186
An axisymmetric solar wind structure including the solar rotation effect is studied by the method of MHD computer simulation. For the case of the radial magnetic field configuration, the simulation result is fairly well coincident with the steady-state solution. For the case of the dipole magnetic field configuration, the properties of the solution depend on the ratio of the gas pressure to the magnetic pressure-ratio) in the model. If the-ratio is small, a clearly defined stagnation region appears in the wind, in which the flow speed is very small and the azimuthal magnetic field is very weak because of the corotation of the plasma. If the-ratio is greater than 1, the plasma is not effectively trapped by the magnetic field so that the stagnation region is not clearly defined in the solution.  相似文献   

15.
Gary  G. Allen 《Solar physics》2001,203(1):71-86
In this paper, we present a model of the plasma beta above an active region and discuss its consequences in terms of coronal magnetic field modeling. The -plasma model is representative and derived from a collection of sources. The resulting variation with height in the solar atmosphere is used to emphasize that the assumption that the magnetic pressure dominates over the plasma pressure must be carefully employed when extrapolating the magnetic field. This paper points out (1) that the paradigm that the coronal magnetic field can be constructed from a force-free magnetic field must be used in the correct context, since the force-free region is sandwiched between two regions which have >1, (2) that the chromospheric Mgii–Civ magnetic measurements occur near the -minimum, and (3) that, moving from the photosphere upwards, can return to 1 at relatively low coronal heights, e.g., R1.2 R s.  相似文献   

16.
An ultraviolet-excess galaxy Markarian 313 (NGC 7465), which consists of a multiple system with NGC 7463 and NGC 7464, is studied using the low- and high-resolution optical spectrum. Emission lines of H, H, [NII], and [OIII] have conspicuous blueward asymmetrical wings or blue slanted profiles in the spectrum of the nuclear region of the galaxy. The width of these emission lines is as broad as 600 km s–1 at the zero-intensity level, and the velocity difference between the narrow and broad components is estimated at around 80 km s–1 from the two-component Gaussian profile fitting. This fact could be an evidence of a large-scale dynamical motion in or surrounding the nuclear region of the galaxy, implying that it bears an intermediate characteristic between a Seyfert and a starburst galaxy.  相似文献   

17.
An empirical relationship between the ratio of the intensities of emission lines in spectra of planetary nebulae, 4686 Heii/H andN 1+N 2[Oiii]/4868 Heii, is established (see Equation (1), curve in Figure 1). A new statistical temperature scale based on this empirical relationship is proposed for the determination of lower limits of the temperatures of the nuclei of planetary nebulae. The well-known method 4686 Heii/H gives the upper level of the temperature of the nucleus. A simultaneous application of both methods has been carried out for 97 planetary nebulae, in order to determine both the upper and lower limits of the temperature of their nuclei (last two columns in Table I). A new quantitative system for the determination of excitation classes of nebulae is proposed (Tables IV and V).  相似文献   

18.
H. C. Spruit 《Solar physics》1979,61(2):363-378
Flux tubes of constant extending vertically through the solar convection zone are unstable to a convective instability if the surface field strength is less than 1270 G. By downward displacement of matter along the tube an unstable tube can transform into a new equilibrium state with lower energy which has a higher field strength. Numerical calculations of these collapsed states are presented. If the collapse starts in a field with a strength corresponding to equipartition with kinetic energy in the convection zone, it yields a surface field strength of about 1650 G. It is proposed that the small scale magnetic field in active regions consists of such tubes. The collapsed state is not in thermal equilibrium. In the deeper layers the heat exchange following the collapse is very slow but the surface layers return rapidly to temperature equilibrium. It is argued that during the gradual thermal evolution of the collapsed state its surface layers may start an overstable oscillation. A brightness-velocity correlation in this oscillation could account for the observed downdraft in the tubes.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
For spherical blast waves propagating through a self-gravitating gas with an energy inputE =E 0 t , whereE is the energy released up to timet,E 0 is a functional constant, and is a constant, kinetic, internal heat, and gravitational potential energies have been computed. Taking the parameterA 2, which characterises the gravitational field, equal to 2, variations of the percentages of these energies for =0, 1/2, 4/3, and 3 with shock strength have been presented. For =3, the effect of cavitation on the percentages of kinetic energy and internal heat energies has been explored.  相似文献   

20.
High dispersion time-resolved spectrograms of the dwarf nova SS Cygni, obtained with the Echelle-Mepsicron system, show double peaked emission lines with a complex profile. The intensity of the H line appears to be modulated by the orbital period. Radial velocity measurements of the wings of H and of the absorption line system of the late-type star yield semiamplitude values of Kem=101±6 km s–1 and Kab=151±7 km s–1, respectively. Radial velocity measurements of the blue and red peaks and of the central absorption of H reveal a synchronous movement with the broad wings, although there is some evidence of a narrow component probably associated with a hot spot in the disk or a chromospheric emission line from the secondary star. The H modulation, the double profile and recently discovered UBV light variations support an inclination angle i 50°. The masses of the primary are Mp=0.60 M and Ms=0.40 M, respectively. A detailed analysis of the absorption lines reveals a spectral type of K2V.Paper presented at the IAU Colloquium No. 93 Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号