首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that dust-neutral and ion-neutral drags can produce instabilities of electrostatic waves in multicomponent self-gravitating dusty plasmas. Explicit expressions for the growth rates of the instabilities are presented. The relevance of our investigation to fragmentation of molecular dust clouds is discussed.  相似文献   

2.
Electrostatic dust-cyclotron (EDC) waves can be excited in a collisional, magnetized, dusty plasma by passing a current along the magnetic field, B, permeating the plasma. The minimum B field-aligned electric field required for excitation of the EDC waves is typically several times smaller than the one required for excitation of dust-acoustic (DA) waves.Two dusty plasmas are considered in more detail, namely (a) a comet tail plasma, and (b) one which may be produced in a laboratory device of the type described by Xu et al. (1992).  相似文献   

3.
A rigorous theoretical investigation has been made on the obliquely propagating dust-acoustic (DA) waves in a magnetized dusty plasmas consisting of distinct temperature q-distributed electrons with distinct strength of nonextensivities, nonthermal ions and negatively charged mobile dust grains, and analyzed by deriving the Zakharov-Kuznetsov equation. It is found that the characteristics and the properties of the DA solitary waves (DASWs) are significantly modified by the external magnetic field, relative temperature ratio of ions, relative number densities of electrons as well as ions, the nonextensivity of electrons, nonthermality of ions and the obliqueness of the system. The possible implications of the results obtained from this analysis in space and laboratory dusty plasmas are briefly addressed.  相似文献   

4.
5.
Ionized gases containing fine (μm to sub-μm sized) charged dust grains, referred to as dusty plasmas, occur in diverse cosmic and laboratory environments. Dust occurs in many space and astrophysical environments, including planetary rings, comets, the Earth's ionosphere, and interstellar molecular clouds. Dust also occurs in laboratory plasmas, including processing plasmas, and crystallized dusty plasmas. Charged dust can lead to various effects in a plasma. In this review, some physical processes in dusty plasmas are discussed, with an emphasis on applications to dusty plasmas in space. This includes theoretical work on several wave instabilities, the role of dust as an electron source, and Coulomb crystals of positively charged dust. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Perpendicularly propagating electromagnetic waves in magnetized, multispecies, self-gravitating dusty plasmas are investigated in terms of their wave dispersion properties as well as with respect to their susceptibility to gravitational collapse. In particular, waves on the ordinary as well as extraordinary mode branches are considered. Within the one-dimensional propagation model employed, all modes except the ordinary mode produce density perturbations that can be unstable to gravitational collapse. The wavelengths that are unstable are comparable to the well-known Jeans length for a neutral gas/dust, but there are interesting modifications due to the presence of a magnetic field and charged particles. Furthermore, the effects of the gravitational coupling of a multicomponent plasma to a neutral dust are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
It has been hypothesized that the sustained narrowness observed in the asymptotic cylindrical region of bipolar outflows from Young Stellar Objects (YSO) indicates that these jets are magnetically collimated. The j z × B ϕ force observed in z-pinch plasmas is a possible explanation for these observations. However, z-pinch plasmas are subject to current driven instabilities (CDI). The interest in using z-pinches for controlled nuclear fusion has lead to an extensive theory of the stability of magnetically confined plasmas. Analytical, numerical, and experimental evidence from this field suggest that sheared flow in magnetized plasmas can reduce the growth rates of the sausage and kink instabilities. Here we propose the hypothesis that sheared helical flow can exert a similar stabilizing influence on CDI in YSO jets.  相似文献   

8.
A theoretical investigation has been made on obliquely propagating dust-ion-acoustic solitary waves (DIASWs) in magnetized dusty electronegative plasma containing Boltzmann electrons, trapped negative ions, cold mobile positive ions, and arbitrarily charged stationary dust. The reductive perturbation method has been employed to derive the modified Zakharov-Kuznetsov (MZK) equation which admits solitary wave solution under certain conditions. The multi-dimensional instability of these solitary waves is also studied by the small-k (long wavelength plane wave) perturbation-expansion technique. The basic properties (speed, amplitude, width, instability, etc.) of small but finite amplitude DIASWs are significantly modified by the effects of external magnetic field, obliqueness, polarity of dust, and trapped negative ions. The implications of our results in space and laboratory plasmas are briefly discussed.  相似文献   

9.
The nonlinear coupling between a large amplitude electromagnetic wave and the slow background motion in a dusty plasma is considered. Stimulated scattering instabilities are investigated. The relevance of our investigation to cometary and astrophysical plasmas is pointed out.  相似文献   

10.
Propagation of waves in a magnetized dusty plasma are studied for all the range of values of ion-cyclotron frequency, and having streams of electrons and ions. The dispersion relation is obtained for the waves propagating through the dusty plasma and analysed for different modes of propagation for relative abundance of dust in the plasma. It is observed that abundance of dust, streaming motions of electrons and ions have an important influence on the propagation of waves in the dusty plasma particularly when the phase velocity of the wave is in the low frequency region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The nonlinear coupling between electromagnetic fields in a strongly magnetized electron-positron plasma is considered. We point out that compressional magnetic field perturbations are excited by the rotational part of the nonlinear current, and derive a new nonlinear system of equations that is basic for studies of modulational instabilities and coherent nonlinear structures in magnetized electron-positron plasmas.  相似文献   

12.
13.
The Kelvin-Helmholtz instability in magnetized, dusty plasmas is examined, for both negatively and positively charged dust. The critical shear in the ion velocity along the magnetic field is computed as a function of the charge residing on dust grains.  相似文献   

14.
Bifurcation behavior of nonlinear dust ion acoustic travelling waves in a magnetized quantum dusty plasma has been studied. Applying the reductive perturbation technique (RPT), we have derived a Kadomtsev-Petviashili (KP) equation for dust ion acoustic waves (DIAWs) in a magnetized quantum dusty plasma. By using the bifurcation theory of planar dynamical systems to the KP equation, we have proved that our model has solitary wave solutions and periodic travelling wave solutions. We have derived two exact explicit solutions of the above travelling waves depending on different parameters.  相似文献   

15.
The analysis of the stability and the dispersion properties of a counterstreaming plasma system with kappa distributions are extended here with the investigation of perpendicular instabilities. Purely growing filamentation (Weibel-like) modes propagating perpendicular to the background magnetic field can be excited in streaming plasmas with or without an excess of parallel temperature. In this case, however, the effect of suprathermal tails of kappa populations is opposite to that obtained for parallel waves: the growth rates can be higher and the instability faster than for Maxwellian plasmas. The unstable wavenumbers also extend to a markedly larger broadband making this instability more likely to occur in space plasmas with anisotropic distributions of kappa-type. The filamentation instability of counterstreaming magnetized plasmas could provide a plausible mechanism for the origin of two-dimensional transverse magnetic fluctuations detected at different altitudes in the solar wind.  相似文献   

16.
17.
The nonlinear mode coupling equations for electrostatic and electromagnetic waves in strongly magnetized nonuniform electron-positron-ion plasmas are derived. It is found that a small fraction of stationary ions (or high-Z charged impurities) can be responsible for the formation of coherent vortices which are forbidden when the ions are absent. Such vortices might significantly affect the transport properties of electron-positron plasmas in external magnetic fields.  相似文献   

18.
The current-driven electrostatic solitons and shocks are investigated in flowing plasmas having stationary dust and non-Maxwellian electrons. The propagation of solar wind parallel to the external magnetic field in the boundary regions of dusty magnetospheres of planets can give rise to drift type unstable electrostatic waves and nonlinear structures even if density is homogeneous. These waves can be produced in laboratory plasma experiments as well. Here the theoretical model is applied to Saturn’s magnetosphere.  相似文献   

19.
The modified Kodomtsev-Petviashvili-Burger (mKP-Burger) and Kodomtsev-Petviashvili-Burger equations are derived in strongly coupled dusty plasmas containing iso-nonthermal ions; Boltzmann distributed electrons and variable dust charge. We use reductive perturbation method and discuss on solitary waves and shock waves solutions of these equations.  相似文献   

20.
The nonlinear dust acoustic waves in dusty plasmas with two temperature electrons and the combined effects of bounded spherical geometry and the transverse perturbation are studied. Using the perturbation method, a spherical Kadomtsev-Petviashvili (SKP) equation that describes the dust acoustic waves is deduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号