首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
高光谱遥感积雪制图算法及验证   总被引:8,自引:0,他引:8  
李震  施建成 《测绘学报》2001,30(1):67-73
雪盖面积是高山地区和季节雪盖区水文和气象模型的重要输入因子。机载和星载遥感数据提取的雪盖面积是融雪径流模型的重要组成部分。对应不同传感器件的光谱特征,多种分类方法被相继提出。但是,缺乏相对独立的验证手段来评价各种分类方法,其主要原因是缺乏地面真实状态。针对该现状,本研究利用高光谱图像的细分光谱特征,建立高光谱影像及其对应“地面真相”的像对数据库来发展和验证积雪制图算法,并展示MODIS积雪制图算法验证和ASTER混合像元分解雪盖制图算法研究的应用实例。  相似文献   

2.
融合时间序列环境卫星数据与物候特征的水稻种植区提取   总被引:3,自引:0,他引:3  
柳文杰  曾永年  张猛 《遥感学报》2018,22(3):381-391
获取高精度的区域水稻种植面积对于农业规划、配置与决策具有重要意义。区域尺度的水稻面积获取依赖于高时空分辨率影像,但受卫星回访周期和气候影响,难以获取足够时间序列的高时空分辨率影像,从而影响水稻种植面积遥感提取的精度。为此,提出适应于中国南方多雨云天气地区,基于国产环境卫星(HJ-1A/1B)与MODIS融合数据的水稻种植面积提取的新方法。以洞庭湖区为实验区,利用STARFM模型融合环境卫星NDVI数据与MODIS13Q1数据,获取时间序列的环境卫星NDVI数据,利用水稻关键期的NDVI数据结合物候特征参数对水稻种植区域进行提取。结果表明,该方法能有效提取区域水稻种植的面积,水稻种植面积提取的总体精度与Kappa系数分别达到91.71%与0.9024,分类结果明显优于仅采用多光谱影像或NDVI数据。该研究为中国南方多雨云天气地区水稻种植面积提取提供了有效的方法。  相似文献   

3.
为了提高农业遥感数据处理中多光谱影像分割的精度,文章提出了一种面向农田信息提取的遥感影像分割算法:利用KMeans非监督分类算法和Fisher标准估算多光谱遥感影像中各个波段的权值,并将估算的波段权值应用到光谱合并计算中,能够较好地提高农田区域的分割精度,实现基于全局最优合并的区域生长算法,得到最优化的分割结果;从分割结果中提取基于区域的NDVI信息可以较为快速、准确地区分农田和非农田区域。实验结果说明:该方法的分割精度优于传统的全局最优合并算法和FNEA算法,并对遥感影像中旱田和水田的提取均有较好的效果。  相似文献   

4.
当前林地提取的方式主要是选择样本通过监督或半监督进行的,效率较低,为此本文提出一种结合多特征的HSV变换高光谱影像林地提取方法.该方法首先对原影像进行相关校正处理,然后利用归一化植被指数(NDVI)和主成分分析(PCA)得到合成影像,最后利用HSV变换通过设置色彩值范围对影像进行色彩分割提取林地信息.结果显示,使用本文方法对高光谱林地的提取精度可以达到96.29%,说明了本文方法的有效性.   相似文献   

5.
胶东半岛果园TM影像信息的提取决策树方法   总被引:2,自引:0,他引:2  
本文选取胶东半岛最具代表性的5个果品县(市)为研究区,以Landsat TM影像数据为分类影像,尝试提取果园信息。选用可以"无缝"融入多种辅助信息的决策树分类方法,综合NDVI、地形地貌和缨帽变换等多种辅助信息,利用年内物候变化最大的果园与背景地物的光谱差异,进行果园信息提取;利用SPOT影像以及野外考察资料作为检验样本进行精度验证。表明综合多种辅助信息,利用决策树分类法提取TM影像果园信息可行且准确性较高。  相似文献   

6.
复杂的背景信息和高维冗余波段是影响高光谱遥感影像异常目标检测精度的重要因素.本文针对高光谱影像异常目标提取提出了一种子空间分析孤立森林探测方法.该方法不对背景做高斯分布假设,通过正交子空间分析增强输入特征影像中潜在异常目标与背景之间的对比度,通过主成分分析法降维来降低孤立森林算法带来的不确定性,运用了全局和局部结合的思...  相似文献   

7.
利用遥感技术能够实现快速提取城市绿地信息,准确地计算出城市绿地面积及覆盖情况等。本文以广州市TM遥感影像为数据源,进行一系列预处理,对监督分类和先计算NDVI再采用非监督分类这两种提取方法进行比较分析。结果表明,先计算NDVI再采用非监督分类法精度较高,说明该方法是一种有效的绿地信息提取方法。  相似文献   

8.
植被是干旱区生态建设重要的组成部分,而植被覆盖度是生态环境变化的重要指示,是评价生态系统健康的前提条件。本文在遥感等技术的支持下,以landsatTM影像为数据源,选用归一化植被指数(NDVI)和线性光谱混合分析模型(LSMM)两种方法进行分析比较,提取吐鲁番市近20年植被覆盖度,并对该地区植被覆盖度的演变特征进行分析。结果表明:①LSMM方法能较好地提取干旱区植被信息,指标简单且分类精度较高。②NDVI方法提取植被时,受到很多限制,在干旱区不宜采用。  相似文献   

9.
针对研究区建筑物大小不一、排列复杂多样、颜色和材质差异较大的实际情况,提出了一种基于面向对象的城区高分辨率影像建筑物信息精细提取方法。该方法考虑了不同颜色建筑物之间以及建筑物与其他地物的特征差异,将建筑物细分为4种子类型,在对高分辨率影像进行分割的基础上,充分挖掘目标对象的光谱、几何、纹理信息等特征,利用随机森林算法对建筑物进行提取并对特征的重要性进行评估。结果发现,精细提取场景下的波段3比值、PCA3均值、PCA4均值、NDVI等特征的重要性较建筑物作为一个类别提取的常规方法出现了较为显著的上升,表明精细提取场景下的影像特征得到了更为充分的应用。使用该方法提取建筑物面积的用户精度和生产者精度较常规方法提高了12.16%和4.09%,为复杂情况下的高分辨率影像建筑物信息提取提供了新的途径。  相似文献   

10.
基于小波分量特征值匹配的高光谱影像分类   总被引:1,自引:0,他引:1  
提出了一种基于小波分量特征值的高光谱影像分类算法。针对每个像素构建一个能反映该分量特征的函数,得到其特征值。再利用这些特征值与参考光谱的特征值进行匹配,从而对整幅影像实现分类。实验证明,该方法比传统的光谱角制图法和交叉相关系数法的分类精度有较大提高。  相似文献   

11.
We aim a better understanding of the effect of spring-time snow melt on the remotely sensed scene reflectance by using an extensive amount of optical spectral data obtained from an airborne hyperspectral campaign in Northern Finland. We investigate the behaviour of thin snow reflectance for different land cover types, such as open areas, boreal forests and treeless fells. Our results not only confirm the generally known fact that the reflectance of a melting thin snow layer is considerably lower than that of a thick snow layer, but we also present analyses of the reflectance variation over different land covers and in boreal forests as a function of canopy coverage. According to common knowledge, the highly variating reflectance spectra of partially transparent, most likely also contaminated thin snow pack weakens the performance of snow detection algorithms, in particular in the mapping of Fractional Snow Cover (FSC) during the end of the melting period. The obtained results directly support further development of the SCAmod algorithm for FSC retrieval, and can be likewise applied to develop other algorithms for optical satellite data (e.g. spectral unmixing methods), and to perform accuracy assessments for snow detection algorithms.A useful part of this work is the investigation of the competence of Normalized Difference Snow Index (NDSI) in snow detection in late spring, since it is widely used in snow mapping. We conclude, based on the spectral data analysis, that the NDSI -based snow mapping is more accurate in open areas than in forests. However, at the very end of the snow melting period the behavior of the NDSI becomes more unstable and unpredictable in non-forests with shallow snow, increasing the inaccuracy also in non-forested areas. For instance in peatbogs covered by melting snow layer (snow depth < 30 cm) the mean NDSI -0.6 was observed, having coefficient of variation as high as 70%, whereas for deeper snow packs the mean NDSI shows positive values.  相似文献   

12.
Snow is highly reflective in the visible region of the electromagnetic spectrum making it possible to easily distinguish on a satellite image. However, cloud cover and mountain shadows pose a serious problem in the identification of snow in a mountainous region. Therefore, to identify snow in such an environment, a Normalized Difference Snow Index (NDSI) has been applied. The NDSI is based on the high reflectance of snow in the visible region and its low reflectance in the SWIR region, whereas, reflectance of cloud remains high compared to snow in the SWIR region. Efforts have been made to carry out field observations on reflectance of various land features near Manali in Himachal Pradesh (HP) to develop NDSI values for identifying snow. Field data have been collected using three field radiometers, viz., Multi-band Ground Truth Radiometer (GTR) operating in the 12 spectral bands ranging from visible to near-infrared wavelengths, Near-Infrared Ground Truth Radiometer (NIGTR) operating in the SWIR range, and Ratio-Radiometer (RR) operating in two spectral bands, one in the visible range, and another band in the SWIR range. All these three field radiometers have been designed and developed indigenously at the Space Applications Centre (ISRO), Ahmedabad. NDSI values for all types of snow, such as, fresh, clear, patchy and wet, have been found to be in the range 0.9 to 0.96. In addition, the NDSI value for snow under mountain shadow is found to be more than 0.9. This suggests the use of NDSI method for snow cover monitoring under mountain shadow. NDSI values for other land features such as soil, vegetation, and rock were substantially different than snow. However, water bodies have NDSI values close to snow and they need to be masked during snow cover delineation using NIR band.  相似文献   

13.
This paper proposes an applicable approach for snow information abstraction in northern Xinjiang Basin using MODIS data. Linear spectral mixture analysis (LSMA) was used to calculate snow cover fractions (SF) within a pixel, which was used to establish a regression function with NDSI. In addition, 80 snow depths samples were collected in the study region. The correlation between image spectra reflectance and snow depth as well as the comparison between measured snow spectra and image spectra was analyzed. An algorithm was developed for snow depth inversion on the basis of the correlation between snow depth and snow spectra in the region. The results indicated that the model of SF had a high accuracy with the mean absolute error 0.06 tested by 26 true measured values and the validation for snow depth model using another dataset with 50 sampling sites showed an RMSE of 1.63. Our study showed that MODIS data provide an alternative method for snow information abstraction through development of algorithms suitable for local application. Supported by the National Natural Science Foundation of China (No.70361001).  相似文献   

14.
Detection, monitoring and precise assessment of the snow covered regions is an important issue. Snow cover area and consequently the amount of runoff generated from snowmelt have a significant effect on water supply management. To precisely detect and monitor the snow covered area we need satellite images with suitable spatial and temporal resolutions where we usually lose one for the other. In this study, products of two sensors MODIS and ASTER both on board of TERRA platform having low and high spatial resolution respectively were used. The objective of the study was to modify the snow products of MODIS by using simultaneous images of ASTER. For this, MODIS snow index image with high temporal resolution were compared with that of ASTER, using regression and correlation analysis. To improve NDSI index two methods were developed. The first method generated from direct comparison of ASTER averaged NDSI with those of MODIS (MODISI). The second method generated by dividing MODIS NDSI index into 10 codes according to their percentage of surface cover and then compared the results with the difference between ASTER averaged and MODIS snow indices (SCMOD). Both methods were tested against some 16 MODIS pixels. It is found that the precision of the MODISI method was more than 96%. This for SCMOD was about 98%. The RMSE of both methods were as good as 0.02.  相似文献   

15.
综合多特征的Landsat 8时序遥感图像棉花分类方法   总被引:3,自引:0,他引:3  
传统的多时相遥感图像分类大多拘泥于单一特征,本文基于多时相的Landsat 8遥感数据,开展了综合多特征的特征提取与特征选择方法研究。综合了NDVI时间序列、最佳时相反射率光谱特征以及纹理特征作为初始分类特征,并采用基于属性重要度的粗糙集特征选择算法对其进行特征约简。分类结果表明:(1)利用初始分类特征,分类的总体精度达到92.81%,棉花提取精度达87.4%,与仅利用NDVI时间序列相比,精度分别提高5.53%和5.05%;(2)利用粗糙集选择后的特征分类,分类总体精度可达93.66%,棉花分类精度达92.73%,与初始分类特征提取结果相比,棉花分类精度提高5.33%。基于属性重要度的粗糙集特征选择不仅提高了分类精度,同时有效降低了分类器的计算复杂度。  相似文献   

16.
This paper presents a new approach to improving land use/cover mapping accuracy in an urban environment. Bi-temporal Landsat TM images (1987 and 1997) were initially classified using the ISODATA method. An NDVI difference image was derived and classified, with each class indicating certain land use/cover changes. Temporal logical reasoning was then performed on the classified NDVI difference map and the initial land use/cover maps. The procedure successfully resolved the confusion between forest clear-cuts/fallow cropland and urban, as well as between forest clear-cuts and cropland. The kappa analysis test led to a Z value of 1.837 with the p-value of 0.026 for the year 1987, and a Z value of 1.924 with the p-value of 0.014 for 1997, indicating significant enhancement at the 95% confidence level.  相似文献   

17.
Abstract

Land cover is an important component of the earth system. Human induced surface alteration can affect earth systems directly, through loss or degradation of ecosystems, or indirectly through impact on the climate and biogeochemical cycles necessary to sustain life on earth. The significance of the earth's surface has made land use/land cover change an important issue in global change research. Alteration of land cover occurs at a variety of spatial scales, but as with many environmental change issues, the impacts of surface changes are often conceptualized at the global scale. In this study, we investigate the effects of land cover change on total reflected radiation and the Normalized Difference Vegetation Index (NDVI) in a 10,000 km2 local area in the High Plains of southwestern Kansas. Landsat MSS data from five years of record within the twenty‐year period 1973 to 1992 were classified into cool season crop, warm season crop, and pasture/prairie. Mean values of summer reflectance and NDVI from each cover type and for the study area as a whole were then analyzed for systematic change over the study period. Both reflectivity and vegetation index increased during the study period, although causes for the increase appear to be different. Results suggest that changes in mean surface reflectance in the study site are strongly influenced by land cover change, whereas changes in NDVI are more closely linked to 50‐day antecedent precipitation.  相似文献   

18.
基于MODIS数据的雪面温度遥感反演   总被引:3,自引:0,他引:3  
通过对Planck函数在低温范围内进行线性化,改进了针对MODIS数据的实用性分裂窗算法,建立了基于MODIS数据的中纬度地区雪面温度遥感反演方法。以环青海湖地区为研究区进行了算法应用,取得了较理想的效果。验证并分析了雪面温度与海拔高度的负相关关系。通过对下垫面相对均一的3个样区进行分析,讨论了雪面温度与归一化积雪指数的关系,并提出了“NDSI-Ts空间”的概念。  相似文献   

19.
On the basis of simplification of the Planck function in a low temperature range, this paper revises the practical split-window algorithm and presents a method for retrieving snow surface temperature (Ts) based on MODIS data in the middle-latitude region. The application of this method in Qinghai Lake region reveals that it is feasible for the retrieval of Ts. Results of correlation analysis indicate that there was strong negative relationship between Ts and altitude. By analyzing three typical areas in which land cover was relatively homogenous, this paper discusses the relationship between Ts and normalized difference snow index (NDSI) and then presents a new concept named "NDSI-Ts space".  相似文献   

20.
针对提高积雪信息提取精度的要求,为了消除积雪覆盖的结冰水体、薄雪覆盖区以及山体阴影等对于积雪提取的影响,以Landsat-7ETM+为数据源,对近红外波段在积雪信息提取中的优越性进行了探索,提出了一种基于近红外波段和归一化差分积雪指数的积雪提取方法。对典型实验区进行了对比实验分析,结果表明,本文算法能有效减少在结冰水体、薄雪覆盖区以及山体阴影等区域的漏分、误分像元数,获得比SNOMAP算法更佳的积雪识别效果,提高积雪提取的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号