首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Fifty-three samples, including brines associated with oil and natural gas reservoirs and groundwater samples from deep boreholes, were collected from the Pacific and Japan Sea coastal regions in Japan. The 129I/127I and 36Cl/Cl ratios, and stable isotopes (δD and δ18O) are compared to investigate differences related to the geotectonic settings of the two regions. The δD and δ18O data indicate that brine and groundwater from the Pacific coastal region reflect mixing of meteoric water with connate seawater in the pores of sedimentary rocks. On the other hand, brine and groundwater from the Japan Sea coastal region have been hydrothermally altered. In particular, brines associated with petroleum accumulations at Niigata and Akita showed the same isotopic characteristics as fluids found in the Kuroko deposits of the Green Tuff region in northeastern Japan. There is little difference in the 36Cl/Cl ratios in brine and groundwater from the Pacific and Japan Sea coasts. Most brine and some deep groundwater, except those from the Pleistocene Kazusa Group, have already reached the average secular equilibrium ratio of 9.9 ± 2.7 × 10−15 for their mudstone and sandstone reservoirs. There was no correlation between the 36Cl/Cl ratios and differences in geotectonic setting between the Pacific and the Japan Sea coast. The molar I/Br ratio suggests that the I in all of water samples was of biogenic origin. The average 129I/127I ratio was 290 ± 130 × 10−15 to 294 ± 105 × 10−15 in both regions, showing no relationship to the different geotectonic settings. The uncontaminated brine and groundwater samples are likely to have retained the original 129I/127I ratios of marine I released from the old organic matter stored in sedimentary rock.  相似文献   

2.
Accelerator Mass Spectrometry (AMS) was used to measure 129I/127I ratios in surface sea, lake, and river water samples collected in 2004 and 2005 from the English Lake District and from SW Scotland, areas which are in relatively close proximity to the Sellafield nuclear fuel reprocessing plant in NW England. The 129I/127I ratios in surface water collected from the shore of the Irish Sea were in the range 2.8 × 10−6 to 8.2 × 10−6. These ratios are one order of magnitude higher than that of seawater collected from the Irish Sea in 1992, correlating with the increase in 129I content of the Sellafield liquid effluent discharge over the last decade. The 129I/127I ratios in lakes in the Lake District were in the range 0.7 × 10−6 to 6.4 × 10−6 and decreased exponentially as a function of distance from Sellafield. Consideration of the relative variation of stable I concentrations and 129I/127I ratios suggests that Sellafield gaseous discharges may be the dominant source of 129I to the lakes.  相似文献   

3.
129I is one of the three major radiation risk contributors to the public as a consequence of past nuclear processing activities at Department of Energy (DOE) facilities. Elevated levels of 129I are present in the surface soils of F-Area of Savannah River Site, which used to be an isotope separation facility for the production of nuclear weapons components. The 129I in soils is thought to be bound predominantly to soil organic matter (SOM). Measurements of stable 127I and radioactive 129I in humic acids (HAs) and fulvic acids (FAs) obtained by five successive alkaline, two glycerol and one citric acid-alkaline extraction, demonstrated that these extractable humic substances (HS) together account for 54-56% and 46% of the total 127I and 129I in the soil, respectively. The remainder was likely bound to residual SOM. The iodine content (μg-I/g-C) generally decreased with each subsequent extract, while 129I/127I increased concurrently. The coincident variations in chemical compositions, aromaticity (estimated by UV spectroscopy), functional groups (e.g., aliphatic), degree of humification, relative migration in the hydrophobic interaction column, and molecular weight indicated that: (1) iodine in different HAs was bound to a small-size aromatic subunit (∼10 kDa); (2) the large-size subunit (∼90 kDa), which likely linked the small-size unit through some weak chemical forces (hydrogen bonds, hydrophobic or electrostatic interactions), determined the relative mobility of iodine bound to organic matter; (3) from the strong correlation between iodine content and aromaticity in the HAs, we suggested that iodine incorporation into the SOM via covalent aromatic C-I bond is the key mechanism controlling iodine behavior in this system. However, this relationship is not universal for all fractions of organic matter as evidenced from the different slopes of this relationship at the two sampling sites, as well as from the different relationships for HAs and FAs, respectively. These differences in iodination are due to different SOM molecular sizes, compositions, and availability of preferred iodination sites. 129I in the soil downstream from the contaminated site and near a wetland abruptly dropped below our detection limit (0.5 pCi-129I/g-soil), which suggests that the high SOM in the plume soil around the 129I-contaminated F-Area might be a natural barrier to scavenge radioiodine released from the nuclear waste repository by forming organo-iodine compounds. Soil resuspension experiments showed that mobile 129I was mostly associated with a low average molecular weight amphiphilic organic carrier (13.5-15 kDa). SOM clearly behaves as a sink for iodine at the Savannah River Site F-Area. However, this work demonstrates that a small fraction of the SOM can also behave as a source, namely that a small fraction that may be readily dispersible under some environmental conditions and presumably release iodine in the organic-colloidal form. This radioiodinated organo-colloid likely can get into the groundwater through infiltration or surface runoff where it might migrate further into the wetlands. Results from this study provide the geochemical basis for future 129I migration controls, remediation, and/or land-groundwater management strategies.  相似文献   

4.
This research aims to improve the current knowledge of groundwater salinisation processes in coastal aquifers using combined hydrochemical and isotopic parameters and inverse hydrochemical modelling. Field investigations were conducted in Laizhou Bay, which is the area most seriously affected by seawater intrusion in north China. During three sampling campaigns along a vertical transect in the Changyi-Liutuan area, 95 ground- and surface-water samples were collected for major ion and isotope analysis (2H/18O, 3H, 14C, 34S). The groundwater changes along the general flowpath towards the coast from fresh (<1 g/L), brackish (1-10 g/L), saline (10-100 g/L) to brine water (>100 g/L). Molar Cl/Br ratios are close to those of seawater in almost all groundwater samples, indicating that brines and deep seawater evolved from different events of palaeo-seawater intrusion. Depleted isotopic signatures of brines and deep saline water point to a former, initially depleted seawater reservoir due to runoff dilution. Tritium and 14C activities in deep saline water below confining units indicate isolation from modern precipitation and significant residence times. Brine water shows a wide range of 3H and 14C ages due to the complex conditions of mixing without isolation from modern groundwater. Sulphur-34 isotope ratios support seawater intrusion as a possible salt origin, although this parameter does not exclude gypsum dissolution. The combined use of Cl and 18O yields four different end-members of groundwater, and three different mixing scenarios were identified explaining the hydrochemical composition of groundwater samples with intermediate salinity in the different areas. To improve understanding of the various water types and their related processes in a spatial context, a conceptual model was developed integrating the results derived from the presented data in a vertical cross-section. Results of three inverse modelling simulations using PHREEQC-2 show that all hypothetical mixing scenarios derived from conservative components are thermodynamically feasible. In all scenarios, mixing, ion exchange, dissolution of dolomite and precipitation of gypsum and calcite account for the hydrochemical changes.  相似文献   

5.
This work constitutes the first survey of I isotope ratios for Scottish sea water including the first data for the west of Scotland. These data are of importance because of the proximity to the world’s second largest emission source of 129I to the sea, the Sellafield nuclear reprocessing plant, because of the increasing importance of the sea to land transfer of 129I and also as input data for dose estimates based on this pathway of 129I. 129I/127I ratios in SW Scotland reached 3 × 10−6 in 2004. No strong variation of I isotope ratios was found from 2003 to 2005 in Scottish sea waters. Iodine isotope ratios increased by about a factor of 6 from 1992 to 2003 in NE Scotland, in agreement with the increase of liquid 129I emissions from Sellafield over that time period. It is demonstrated that 129I/127I ratios agree better than 129I concentrations for samples from similar locations taken in very close temporal proximity, indicating that this ratio is more appropriate to interpret than the radionuclide concentration.  相似文献   

6.
A new simple, rapid, selective and sensitive analytical procedure based on chemiluminescence (CL) detection is described for the determination of vanadium (V) at sub-nanogram levels in natural waters by use of controlled-reagent- release technology in a flow injection system. The analytical reagents involved in the CL reaction, including luminal and periodate, were both immobilized on anion-exchange resins in a flow injection system. Through water injection, luminol and periodate were eluted from the anion exchange column to generate the chemiluminescence, which was enhanced in the presence of V(V). The increased CL intensity was linear with V(V) concentration in the range from 0.2 to 100 ng mL− 1. The limit of detection was 60 pg mL− 1 (3σ) and the relative standard deviation (RSD) was 1.45% (n = 5) for a 0.5 ng mL− 1 V(V). At a flow rate of 2.0 mL min− 1, including sampling and washing, a typical analytical procedure could be performed in 0.5 min with a RSD of less than 3.0%. The proposed method was successfully applied to determine vanadium in natural waters, and the results were in good agreement with those obtained by ion chromatography.  相似文献   

7.
Our ability to adapt to changes in groundwater quality, arising from a changing climate and/or local pressures, is dependent on comprehension of the governing controls of spatial variation in groundwater chemistry. This paper presents results of an assessment of dominant hydro-geochemical processes controlling groundwater chemical composition, using an integrated application of hierarchical cluster analysis (HCA) and principal component analysis (PCA) of a major ion dataset of groundwater from lower Shire River valley, Malawi. The area is in the southernmost part of the western section of the East African Rift System (EARS) and has localised occurrence of saline groundwater. HCA classified samples into three main clusters (C1-C3) according to their dominant chemical composition: C1 (dominant composition: Na-Cl; median TDS: 3436 mg L−1), C2 (dominant composition: Na-HCO3; median TDS: 966 mg L−1) and C3 (dominant composition: alkali earths-HCO3; median TDS: 528 mg L−1). These clusters were in turn described by the principal components PC1, PC3 and PC2, respectively, resulting from the PCA. The results of the PCA and geochemical interpretation suggest that the spatial variation of groundwater quality in the area is influenced by the following processes: C3 samples result mainly from H2CO3 weathering of aluminosilicate minerals by percolating water supersaturated with CO2. In addition to aluminosilicate weathering, C2 samples are influenced by the processes of cation exchange of Ca2+ and Mg2+ in the water for Na+ on clay minerals, and carbonate precipitation. The increase in ionic strength of C2 samples is attributed to mixing with high TDS groundwater in proximity with C2 samples. The saline/brackish C1 groundwater results from the processes of evaporation (for samples with high water table close to the Shire marshes) and dissolution of Cl and SO4-evaporative salts followed by mineralised seep from sedimentary Karoo and Cretaceous Lupata sandstones.  相似文献   

8.
A total of 1270 raw-water samples (before treatment) were collected from 15 principal and other major aquifer systems (PAs) used for drinking water in 45 states in all major physiographic provinces of the USA and analyzed for concentrations of the Ra isotopes 224Ra, 226Ra and 228Ra establishing the framework for evaluating Ra occurrence. The US Environmental Protection Agency Maximum Contaminant Level (MCL) of 0.185 Bq/L (5 pCi/L) for combined Ra (226Ra plus 228Ra) for drinking water was exceeded in 4.02% (39 of 971) of samples for which both 226Ra and 228Ra were determined, or in 3.15% (40 of 1266) of the samples in which at least one isotope concentration (226Ra or 228Ra) was determined. The maximum concentration of combined Ra was 0.755 Bq/L (20.4 pCi/L) in water from the North Atlantic Coastal Plain quartzose sand aquifer system. All the exceedences of the MCL for combined Ra occurred in water samples from the following 7 PAs (in order of decreasing relative frequency of occurrence): the Midcontinent and Ozark Plateau Cambro-Ordovician dolomites and sandstones, the North Atlantic Coastal Plain, the Floridan, the crystalline rocks (granitic, metamorphic) of New England, the Mesozoic basins of the Appalachian Piedmont, the Gulf Coastal Plain, and the glacial sands and gravels (highest concentrations in New England).  相似文献   

9.
Chloroform is a common groundwater pollutant but also a natural compound in forest ecosystems. Leaching of natural chloroform from forest soil to groundwater was followed by regular analysis of soil air and groundwater from multilevel wells at four different sites in Denmark for a period of up to 4 a. Significant seasonal variation in chloroform was observed in soil air 0.5 m below surface ranging at one site from 120 ppb by volume in summer to 20 ppb during winter. With depth, the seasonal variation diminished gradually, ranging from 30 ppb in summer to 20 ppb during winter, near the groundwater table. Chloroform in the shallowest groundwater ranged from 0.5–1.5 μg L−1 at one site to 2–5 μg L−1 at another site showing no clear correlation with season. Comparing changes in chloroform in soil air versus depth with on-site recorded meteorological data indicated that a clear relationship appears between rain events and leaching of chloroform. Chloroform in top soil air co-varied with CO2 given a delay of 3–4 weeks providing evidence for its biological origin. This was confirmed during laboratory incubation experiments which further located the fermentation layer as the most chloroform producing soil horizon. Sorption of chloroform to soils, examined using 14C–CHCl3, correlated with organic matter content, being high in the upper organic rich soils and low in the deeper more minerogenic soils. The marked decrease in chloroform in soil with depth may in part be due to microbial degradation which was shown to occur at all depths by laboratory tests using 14C–CHCl3.  相似文献   

10.
This study focused on the analysis of As levels in human hair samples collected from six villages in the Kandal Province of Cambodia. Of interest were the influence of, and interactions among, certain factors affecting As intake into the human body: As concentrations in groundwater, period of groundwater consumption, age and gender. The results revealed As levels in human hair ranging from 0.06 to 30 μg g−1 with median and arithmetic mean values of 0.61 and 3.20 μg g−1 (n = 68), respectively. Furthermore, a linear relationship was found between As concentrations in human hair and in the local groundwater. Arsenic (III) is the dominant species in Kandal groundwater, constituting in most cases at least 60% of the total As. Arsenic concentration ranged from 5 to 1543 μg L−1, with the median value 348 μg L−1 and arithmetic mean 454 μg L−1. In large rural, poor areas holding most of Kandal’s 1.1 million people, up to 2 in 1000 people are believed to be at risk of cancer through the As-enriched water they drink. A toxicity risk assessment provides a hazard quotient (HQ) equaling 5.12, also a clear indication of non-carcinogenic exposure risk. On the authors’ visit to Kampong Kong commune, Kandal Province, cases of arsenicosis were diagnosed in patients as a result of drinking As-enriched groundwater.  相似文献   

11.
Sixteen groundwater samples collected from production wells tapping Lower Cretaceous Nubian Sandstone and fractured basement aquifers in Sinai were analyzed for their stable isotopic compositions, dissolved noble gas concentrations (recharge temperatures), tritium activities, and 14C abundances. Results define two groups of samples: Group I has older ages, lower recharge temperatures, and depleted isotopic compositions (adjusted 14C model age: 24,000–31,000 yr BP; δ18O: − 9.59‰ to − 6.53‰; δ2H: − 72.9‰ to − 42.9‰; < 1 TU; and recharge T: 17.5–22.0°C) compared to Group II (adjusted 14C model age: 700–4700 yr BP; δ18O: − 5.89‰ to − 4.84‰; δ2H: − 34.5‰ to − 24.1‰; < 1 to 2.78 TU; and recharge T: 20.6–26.2°C). Group II samples have isotopic compositions similar to those of average modern rainfall, with larger d-excess values than Group I waters, and locally measurable tritium activity (up to 2.8 TU). These observations are consistent with (1) the Nubian Aquifer being largely recharged prior to and/or during the Last Glacial Maximum (represented by Group I), possibly through the intensification of paleowesterlies; and (2) continued sporadic recharge during the relatively dry and warmer interglacial period (represented by Group II) under conditions similar to those of the present.  相似文献   

12.
Aluminium has received great attention in the second half of the 20th century, mainly in the context of the acid rain problem mostly in forest soils. In this research the effect of land use and depth of the groundwater on Al, pH and DOC concentration in groundwater under Dutch sandy soils has been studied. Both pH and DOC concentration play a major role in the speciation of Al in solution. Furthermore, the equilibrium with mineral phases like gibbsite, amorphous Al(OH)3 and imogolite, has been considered. Agricultural and natural land use were expected to have different effects on the pH and DOC concentration, which in turn could influence the total Al concentration and the speciation of Al in groundwater at different depths (phreatic, shallow and deep). An extensive dataset (n = 2181) from the national and some provincial monitoring networks on soil and groundwater quality was used. Land use type and groundwater depth did influence the pH, and Al and DOC concentrations in groundwater samples. The Al concentration ranged from <0.4 μmol L−1 at pH > 7 to 1941 μmol L−1 at pH < 4; highest Al concentrations were found for natural-phreatic groundwater. The DOC concentration decreased and the median pH increased with depth of the groundwater. Natural-phreatic groundwater showed lower pH than the agricultural-phreatic groundwater. Highest DOC concentrations were found for the agricultural-phreatic groundwater, induced by the application of organic fertilizers. Besides inorganic complexation, the NICA-Donnan model was used to calculate Al3+ concentrations for complexation with DOC. Below pH 4.5 groundwater samples were mainly in disequilibrium with a mineral phase. This disequilibrium is considered to be the result of kinetic constraints or equilibrium with organic matter. Log K values were derived by linear regression and were close to theoretical values for Al(OH)3 minerals (e.g. gibbsite or amorphous Al(OH)3), except for natural-phreatic groundwater for which lower log K values were found. Complexation of Al with DOC is shown to be an important factor for the Al concentrations, especially at high DOC concentrations as was found for agricultural-phreatic groundwater.  相似文献   

13.
The spatial and temporal variability of Hg emissions from urban paved surfaces was assessed through repeated measurements under varying environmental conditions at six sample sites in Toronto, Ontario, Canada. The results show significant spatial variability of the Hg emissions with median values ranging from below detection limit to 5.2 ng/m2/h. Two of the sites consistently had higher Hg emissions (on several occasions >20 ng/m2/h) than the other 4, which were equivalently low (maximum emission: 2.1 ng/m2/h). A surrogate measure of the pavement Hg concentrations was obtained during each day of sampling through the collection of street dust. The median street dust concentration also showed significant spatial variability (ranging from 9.6 to 44.5 ng/g). Regression analysis showed that the spatial variability of the Hg emissions was significantly related to the street dust concentrations. Controlled experiments using Hg amended street dust confirmed the relationship between Hg surface concentration and emission magnitude. Within a given sample site, Hg emissions varied temporally and multiple regression analysis showed that within-site variability was significantly influenced by changes in solar radiation with only a minor effect from surface temperature. Controlled experiments using shade cloths confirmed that solar radiation can have a large influence on the magnitude of Hg emissions within a given site. The emissions measured in Toronto were contextualized through comparison sampling in Austin, Texas. The Hg emissions measured in Austin were within the range detected in Toronto and also showed significant correlation with Hg street dust concentrations between sites. To provide a holistic assessment of Hg emissions from urban environments, samples were also collected from other common urban surfaces (soil, roofs, and windows). Soils consistently had higher emissions than all the other surfaces (7.3 ng/m2/h, n = 39).  相似文献   

14.
Portales Valley, Sombrerete, and Northwest Africa (NWA) 176 are three unrelated meteorites, which consist of silicate mixed with substantial amounts of metal and which likely formed at elevated temperatures as a consequence of early impacts on their parent bodies. Measured 39Ar-40Ar ages of these meteorites are 4477 ± 11 Ma and 4458 ± 16 Ma (two samples of Portales Valley), 4541 ± 12 Ma, and 4524 ± 13 Ma, respectively (Ma = million years; all one-sigma errors). The Ar-Ar data for Portales Valley show no evidence of later open system behavior suggested by some other chronometers. Measured 129I-129Xe ages of these three meteorites are 4559.9 ± 0.5 Ma, 4561.9 ± 1.0 Ma, and ∼4544 Ma, respectively (relative to Shallowater = 4562.3 ± 0.4 Ma). From stepwise temperature release data, we determined the diffusion characteristics for Ar and Xe in our samples and calculated approximate closure temperatures for the K-Ar and I-Xe chronometers. Adopting results and interpretations about these meteorites from some previous workers, we evaluated all these data against various thermal cooling models. We conclude that Portales Valley formed 4560 Ma ago, cooled quickly to below the I-Xe closure temperature, then cooled deep within the parent body at a rate of ∼4 °C/Ma through K-Ar closure. We conclude that Sombrerete formed 4562 Ma ago and cooled relatively quickly. NWA 176 likely formed and cooled quickly ∼4544 Ma ago, or later than formation times of most meteorite parent bodies. For all three meteorites, the Ar-Ar ages are in better agreement with I-Xe ages and preferred thermal models if we increase these Ar-Ar ages by ∼20 Ma. Such age corrections would be consistent with probable errors in 40K decay parameters in current use, as suggested by others. The role of impact heating and possible disruption and partial reassembly of meteorite parent bodies to form some meteorites likely was an important process in the early solar system.  相似文献   

15.
Insightful knowledge of geochemical processes controlling As mobility is fundamental to understanding the occurrence of elevated As in groundwater. A comparative study of As geochemistry was conducted in the Datong Basin (Shanxi) and Hetao Basin (Inner Mongolia), two strongly As-enriched areas in China. The results show that As concentrations ranged from <1–1160 μg L−1 (n = 37) in the Datong Basin and <1–804 μg L−1 (n = 62) in the Hetao Basin. The groundwater is of the Na-HCO3 type in the Datong Basin and Na-Cl-HCO3 type in the Hetao Basin. Silicate mineral weathering and cation exchange processes dominated the groundwater geochemistry in the two study areas. Principal component analysis of 99 groundwater samples using 12 geochemical parameters indicated positive correlations between concentrations of As and Fe/Mn in the Datong Basin, but no correlation of As and Fe/Mn in the Hetao Basin. Phosphate correlated well with As in the Datong Basin and Hetao Basin, suggesting phosphate competition might be another process affecting As concentrations in groundwater. High concentrations of As, Fe, and Mn occurred in the pe range −2 to −4. The results of this study further understanding of the similarities and differences of As occurrence and mobility at various locations in China.  相似文献   

16.
A number of chemical and physical processes inside and outside a sedimentary basin (e.g. evaporite dissolution and topographic drive, respectively) affect groundwater flow near the basin’s margin. Contrasting formations at the margin, typically basinal sedimentary rocks and basement, are host to the interplay between these processes so that groundwater flows and compositions change within a relatively small volume. To interpret how groundwater flow and geochemistry have evolved, interactions between these processes must be understood. Such interactions were investigated near the margin of the East Irish Sea Basin in NW England, by sampling deep groundwaters (to 1500 m below sea level) from Ordovician volcanic basement rocks and Carboniferous to Triassic sedimentary cover rocks. Variable Br/Cl ratios and Cl concentrations in deep saline waters and brines indicate mixing patterns. Variations in 36Cl/Cl constrain the timing of mixing. Relatively low Br/Cl ratios (ca. 1 × 10−3 by mass) characterise brine from the western sedimentary cover and reflect halite dissolution further west. Saline water with relatively high Br/Cl ratios (ca. 2 × 10−3 by mass) of uncertain origin occupies the eastern basement. These two waters mix across the area. However, mixing alone cannot explain variable 36Cl/Cl ratios, which partly reflect differing in situ36Cl production rates in different rock formations. Most 36Cl/Cl ratios in groundwater sampled from the eastern metavolcanic basement (mean = 25 × 10−15) and western sedimentary cover (mean = 10 × 10−15) are at or close to equilibrium with in situ36Cl production. These variations in 36Cl/Cl across the site possibly took >1.5 Ma to be attained, implying that deep groundwater flow responded only slowly to the Quaternary glaciation of the site. Interplay between varied processes in basin marginal settings does not necessarily imply flow instability.  相似文献   

17.
18.
The Fruitland Formation of the San Juan Basin was deposited during the late Cretaceous and is associated with significant reservoirs of coalbed methane (CBM). The purpose of this study is to determine the origin and history of waters associated with the formation, using long-lived cosmogenic and stable isotope systems. Ratios of 129I/I and stable isotope values (δD and δ18O) were determined in waters from close to 100 wells, 36Cl/Cl ratios for a subset of these samples. A significant group of samples has 129I/I ratios between 100 × 10−15 and 200 × 10−15, indicating minimum iodine ages close to 60 Ma. If these ages are corrected for the addition of fissiogenic 129I, they are compatible with the depositional age of the Fruitland Formation (Late Cretaceous).Several sets of waters are clearly present within the data. A group dominated by infiltration of recent surface waters is restricted to the uplifted basin margins, with a lateral extent of less than 5 km from outcrop, and is characterized by 129I/I ratios in excess of 1500 × 10−15 and meteoric δD, δ18O, and 36Cl/Cl signatures. The rest of the basin is characterized by several subsets of formation waters which have undergone variable degrees of iodine enrichment through diagenesis as well as variable degrees of dilution. The first subgroup is found in coals of relatively low vitrinite reflectance and moderate enrichment of iodine. This subgroup predominantly consists of entrapped pore fluids, although it may also contain waters which infiltrated the coals at the time of the Laramide uplift, between 25 and 30 Ma. A second subgroup consists of formation waters associated with coals of high vitrinite reflectance. Despite subsequent uplift, the high iodine concentrations and low 129I/I ratios of this subgroup, as well as a moderate depletion of deuterium relative to 18O, suggest that these waters were not significantly altered since the time when diagenetic reactions occurred in the deepest portion of the basin. A third subgroup, with higher δD and δ18O values as well as higher 129I/I ratios, extends roughly west to east at the New Mexico-Colorado state line and corresponds to a region of extensive fracturing of the coalbeds. In this case, the higher 129I/I ratios are probably due to contributions of fissiogenic 129I through fracture flow, perhaps from deeper formation waters. Our results do not support models of subsequent basin-wide groundwater migration in the Fruitland Formation. The combined use of 129I and 36Cl with stable isotope studies provides valuable information as to the hydrologic history of coalbed methane deposits, as well as their potential for commercial exploitation.  相似文献   

19.
Twenty-nine wells were selected for groundwater sampling in the town of Shahai, in the Hetao basin, Inner Mongolia. Four multilevel samplers were installed for monitoring groundwater chemistry at depths of 2.5–20 m. Results show that groundwater As exhibits a large spatial variation, ranging between 0.96 and 720 μg/L, with 71% of samples exceeding the WHO drinking water guideline value (10 μg/L). Fluoride concentrations range between 0.30 and 2.57 mg/L. There is no significant correlation between As and F concentrations. Greater As concentrations were found with increasing well depth. However, F concentrations do not show a consistent trend with depth. Groundwater with relatively low Eh has high As concentrations, indicating that the reducing environment is the major factor controlling As mobilization. Low As concentrations (<10 μg/L) are found in groundwater at depths less than 10 m. High groundwater As concentration is associated with aquifers that have thick overlying clay layers. The clay layers, mainly occurring at depths <10 m, have low permeability and high organic C content. These strata restrict diffusion of atmospheric O2 into the aquifers, and lead to reducing conditions that favor As release. Sediment composition is an additional factor in determining dissolved As concentrations. In aquifers composed of yellowish-brown fine sands at depths around 10 m, groundwater generally has low As concentrations which is attributed to the high As adsorption capacity of the yellow–brown Fe oxyhydroxide coatings. Fluoride concentration is positively correlated with pH and negatively correlated with Ca2+ concentration. All groundwater samples are over-saturated with respect to calcite and under-saturated with respect to fluorite. Dissolution and precipitation of Ca minerals (such as fluorite and calcite), and F adsorption–desorption are likely controlling the concentration of F in groundwater.  相似文献   

20.
The interaction of Cs(I), Eu(III), Th(IV) and U(VI) with montmorillonite colloids was investigated in natural Grimsel Test Site groundwater over a 3 years period. The asymmetric flow field-flow fractionation combined with various detectors was applied to study size variations of colloids and to monitor colloid association of trace metals. The colloids suspended directly in the low ionic strength (I), slightly alkaline granitic groundwater (I = 10−3 mol/L, pH 9.6) showed a gradual agglomeration with a size distribution shift from initially 10-200 nm to 50-400 nm within over 3 years. The Ca2+ concentration of 2.1 × 10−4 mol/L in the ground water is believed to be responsible for the slow agglomeration due to Ca2+ ion exchange against Li+ and Na+ at the permanently charged basal clay planes. Furthermore, the Ca2+ concentration lies close to the critical coagulation concentration (CCC) of 10−3 mol L−1 for clay colloids. Slow destabilization may delimit clay colloid migration in this specific groundwater over long time scales. Eu(III) and Th(IV) are found predominantly bound to clay colloids, while U(VI) prevails as the UO2(OH)3 complex and Cs(I) remains mainly as aquo ion under our experimental conditions. Speciation calculations qualitatively represent the experimental data. A focus was set on the reversibility of metal ion-colloid binding. Addition of humic acid as a competing ligand induces rapid metal ion dissociation from clay colloids in the case of Eu(III) even after previous aging for about 3 years. Interestingly only partial dissociation occurs in the case of Th(IV). Experiments and calculations prove that the humate complexes dominate the speciation of all metal ions under given conditions. The partial irreversibility of clay bound Th(IV) is presently not understood but might play an important role for the colloid-mediated transport of polyvalent actinides over wide distances in natural groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号