首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The δ18O of ground water (−13.54 ± 0.05 ‰) and inorganically precipitated Holocene vein calcite (+14.56 ± 0.03 ‰) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 °C of 1.02849 ± 0.00013 (1000 ln αcalcite-water = 28.09 ± 0.13). Using the commonly accepted value of ∂(αcalcite-water)/∂T of −0.00020 K−1, this corresponds to a 1000 ln αcalcite-water value at 25 °C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 °C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a δ18O of water, from which the calcite precipitated, that is too negative by 1.5 ‰ using a temperature of 33.7 °C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order.Assuming the Devils Hole oxygen isotopic value of αcalcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a δ18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.  相似文献   

2.
The isotopic composition of atmospheric O2 depends on the rates of oxygen cycling in photosynthesis, respiration, photochemical reactions in the stratosphere and on δ17O and δ18O of ocean and leaf water. While most of the factors affecting δ17O and δ18O of air O2 have been studied extensively in recent years, δ17O of leaf water—the substrate for all terrestrial photosynthesis—remained unknown. In order to understand the isotopic composition of atmospheric O2 at present and in fossil air in ice cores, we studied leaf water in field experiments in Israel and in a European survey. We measured the difference in δ17O and δ18O between stem and leaf water, which is the result of isotope enrichment during transpiration. We calculated the slopes of the lines linking the isotopic compositions of stem and leaf water. The obtained slopes in ln(δ17O + 1) vs. ln(δ18O + 1) plots are characterized by very high precision (∼0.001) despite of relatively large differences between duplicates in both δ17O and δ18O (0.02-0.05‰). This is so because the errors in δ18O and δ17O are mass-dependent. The slope of the leaf transpiration process varied between 0.5111 ± 0.0013 and 0.5204 ± 0.0005, which is considerably smaller than the slope linking liquid water and vapor at equilibrium (0.529). We further found that the slope of the transpiration process decreases with atmospheric relative humidity (h) as 0.522-0.008 × h, for h in the range 0.3-1. This slope is neither influenced by the plant species, nor by the environmental conditions where plants grow nor does it show strong variations along long leaves.  相似文献   

3.
Dansgaard–Oeschger (D–O) cycles had far-reaching effects on Northern Hemisphere and tropical climate systems during the last glacial period, yet the climatic response to D–O cycles in western North America is controversial, especially prior to 55 ka. We document changes in precipitation along the western slope of the central Sierra Nevada during early Marine Oxygen Isotope Stages (MIS) 3 and 4 (55–67 ka) from a U-series dated speleothem record from McLean's Cave. The timing of our multi-proxy geochemical dataset is coeval with D–O interstadials (15–18) and stadials, including Heinrich Event 6. The McLean's Cave stalagmite indicates warmer and drier conditions during Greenland interstadials (GISs 15–18), signified by elevated δ18O, δ13C, reflectance, and trace element concentrations, and less radiogenic 87Sr/86Sr. Our record extends evidence of a strong linkage between high-latitude warming and reduced precipitation in western North America to early MIS 3 and MIS 4. This record shows that the linkage persists in diverse global climate states, and documents the nature of the climatic response in central California to Heinrich Event 6.  相似文献   

4.
Water samples from cold and geothermal boreholes, hot springs, lakes and rivers were analyzed for δD, δ18O and 87Sr/86Sr compositions in order to investigate lake water–groundwater mixing processes, water–rock interactions, and to evaluate groundwater flow paths in the central Main Ethiopian Rift (MER) of the Ziway–Shala basin. Different ranges of isotopic values were recorded for different water types: hot springs show δ18O −3.36 to +3.69 and δD −15.85 to +24.23, deep Aluto-Langano geothermal wells show δ18O −4.65 to −1.24 and δD −12.39 to −9.31, groundwater wells show δ18O −3.99 to +5.14 and δD −19.69 to +32.27, whereas the lakes show δ18O and δD in the range +3.98 to +7.92 and +26.19 to +45.71, respectively. The intersection of the Local Meteoric Water Line (LMWL: δD = 7 δ18O + 11.2, R2 = 0.94, n = 42) and the Local Evaporation Line (LEL: δD = 5.63δ18O + 8, n = 14, R2 = 0.82) was used to estimate the average isotopic composition of recharge water into the basin (δD = −5.15 and δ18O = −2.34). These values are depleted if compared with the modern-day average precipitation, presumably indicating paleo-groundwater components recharged during previous humid climatic phases. The measured stable isotope values indicate that the geothermal wells, some of the hot springs and groundwater wells mainly consist of meteoric water. The Sr isotopic signatures in all waters are within the range of the Sr isotopic composition of the rift basalts and rhyolites. The variability of Sr isotopic data also pinpoints complex water–rock interaction and mixing processes in groundwater and surface water. The 87Sr/86Sr ratio ranges from 0.70445 to 0.70756 in the hot springs, from 0.70426 to 0.70537 in two deep geothermal wells, and from 0.70673 to 0.70721 in the rift lakes Ziway, Langano, Shala and Awasa. The radiogenic composition recorded by the lakes indicates that the input water was predominantly affected by progressive interaction with rhyolitic volcanics and lacustrine sediments.  相似文献   

5.
The oxygen-isotope compositions (obtained by laser fluorination) of hand-picked separates of isolated forsterite, isolated olivine and chondrules from the Tagish Lake carbonaceous chondrite describe a line (δ17O = 0.95 * δ18O − 3.24; R2 = 0.99) similar to the trend known for chondrules from other carbonaceous chondrites. The isolated forsterite grains (Fo99.6-99.8; δ18O = −7.2‰ to −5.5‰; δ17O = −9.6‰ to −8.2‰) are more 16O-rich than the isolated olivine grains (Fo39.6-86.8; δ18O = 3.1‰ to 5.1‰; δ17O = −0.3‰ to 2.2‰), and have chemical and isotopic characteristics typical of refractory forsterite. Chondrules contain olivine (Fo97.2-99.8) with oxygen-isotope compositions (δ18O = −5.2‰ to 5.9‰; δ17O = −8.1‰ to 1.2‰) that overlap those of isolated forsterite and isolated olivine. An inverse relationship exists between the Δ17O values and Fo contents of Tagish Lake isolated forsterite and chondrules; the chondrules likely underwent greater exchange with 16O-poor nebular gases than the forsterite. The oxygen-isotope compositions of the isolated olivine grains describe a trend with a steeper slope (1.1 ± 0.1, R2 = 0.94) than the carbonaceous chondrite anhydrous mineral line (CCAMslope = 0.95). The isolated olivine may have crystallized from an evolving melt that exchanged with 16O-poor gases of somewhat different composition than those which affected the chondrules and isolated forsterite. The primordial components of the Tagish Lake meteorite formed under conditions similar to other carbonaceous chondrite meteorite groups, especially CMs. Its alteration history has its closest affinities to CI carbonaceous chondrites.  相似文献   

6.
Lithological, chemical, and stable isotope data are used to characterize lacustrine tufas dating back to pre-late Miocene and later unknown times, capping different surfaces of a Tertiary carbonate (Sinn el-Kedab) plateau in Dungul region in the currently hyperarid south-western Egypt. These deposits are composed mostly of calcium carbonate, some magnesium carbonate and clastic particles plus minor amounts of organic matter. They have a wide range of (Mg/Ca)molar ratios, from 0.03 to 0.3. The bulk-tufa carbonate has characteristic isotope compositions: (δ13Cmean = −2.49 ± 0.99‰; δ18Omean = −9.43 ± 1.40‰). The δ13C values are consistent with a small input from C4 vegetation or thinner soils in the recharge area of the tufa-depositing systems. The δ18O values are typical of fresh water carbonates. Covariation between δ13C and δ18O values probably is a reflection of climatic conditions such as aridity. The tufas studied are isotopically similar to the underlying diagenetic marine chalks, marls and limestones (δ13Cmean = −2.06 ± 0.84‰; δ18Omean = −10.06 ± 1.39‰). The similarity has been attributed to common meteoric water signatures. This raises large uncertainties in using tufas (Mg/Ca)molar, δ13C and δ18O records as proxies of paleoclimatic change and suggests that intrinsic compositional differences in material sources within the plateau may mask climatic changes in the records.  相似文献   

7.
The isotopic composition of carbon and oxygen in a calcite precipitating CO2-H2O-CaCO3 solution is preserved in the calcite precipitated. For the interpretation of isotopic proxies from stalagmites knowledge of the evolution of δ13C and δ18O in the solution during precipitation is required. A system of differential equations is presented from which this evolution can be derived. Both, irreversible loss of carbon and oxygen from the solution with precipitation time τ and exchange of oxygen in the carbonates with the oxygen in the water with exchange time T are considered. For carbon, where no exchange is active, a modified equation of Rayleigh-distillation is found, which takes into account that precipitation stops at ceq, the saturation concentration of DIC with respect to calcite, and that ceq as well as the precipitation time τ is slightly different for the heavy and the light isotope. This, however, requires introducing a new parameter γ = (Aeq/Beq)/(A0/B0), which has to be determined experimentally. (Aeq/Beq) is the isotopic ratio for the heavy (A) and the light isotope (B) at both chemical and isotopic equilibrium and (A0/B0) is the initial isotopic ratio of the solution. In the case of oxygen, where exchange is present, the isotopic shifts are reduced with increasing values of the precipitation time τ. For τ ? T the solution stays in isotopic equilibrium with the oxygen in the water during the entire time in which precipitation is active. The isotopic ratios in a calcite precipitating solution R(t)/R0 = (1 + δ(t)/1000) for carbon are plotted versus those of oxygen. R0 is the isotopic ratio at time t = 0, when precipitation starts and δ(t) the isotopic shift in the solution after time t. These show positive correlations for the first 50% of calcite, which can precipitate. Their slopes increase with increasing values of τ and they closely resemble Hendy-tests performed along growth layers of stalagmites. Our results show that stalagmites, which grow by high supply of water with drip times less than 50 s, exhibit positive correlations between δ13C and δ18O along a growth layer. But in spite of this the isotopic composition of oxygen in the solution at the apex is in isotopic equilibrium with the oxygen in the water, and therefore also that of calcite deposited at the apex.  相似文献   

8.
Atmospheric carbon dioxide is widely studied using records of CO2 mixing ratio, δ13C and δ18O. However, the number and variability of sources and sinks prevents these alone from uniquely defining the budget. Carbon dioxide having a mass of 47 u (principally 13C18O16O) provides an additional constraint. In particular, the mass 47 anomaly (Δ47) can distinguish between CO2 produced by high temperature combustion processes vs. low temperature respiratory processes. Δ47 is defined as the abundance of mass 47 isotopologues in excess of that expected for a random distribution of isotopes, where random distribution means that the abundance of an isotopologue is the product of abundances of the isotopes it is composed of and is calculated based on the measured 13C and 18O values. In this study, we estimate the δ13C (vs. VPDB), δ18O (vs. VSMOW), δ47, and Δ47 values of CO2 from car exhaust and from human breath, by constructing ‘Keeling plots’ using samples that are mixtures of ambient air and CO2 from these sources. δ47 is defined as , where is the R47 value for a hypothetical CO2 whose δ13CVPDB = 0, δ18OVSMOW = 0, and Δ47 = 0. Ambient air in Pasadena, CA, where this study was conducted, varied in [CO2] from 383 to 404 μmol mol−1, in δ13C and δ18O from −9.2 to −10.2‰ and from 40.6 to 41.9‰, respectively, in δ47 from 32.5 to 33.9‰, and in Δ47 from 0.73 to 0.96‰. Air sampled at varying distances from a car exhaust pipe was enriched in a combustion source having a composition, as determined by a ‘Keeling plot’ intercept, of −24.4 ± 0.2‰ for δ13C (similar to the δ13C of local gasoline), δ18O of 29.9 ± 0.4‰, δ47 of 6.6 ± 0.6‰, and Δ47 of 0.41 ± 0.03‰. Both δ18O and Δ47 values of the car exhaust end-member are consistent with that expected for thermodynamic equilibrium at∼200 °C between CO2 and water generated by combustion of gasoline-air mixtures. Samples of CO2 from human breath were found to have δ13C and δ18O values broadly similar to those of car exhaust-air mixtures, −22.3 ± 0.2 and 34.3 ± 0.3‰, respectively, and δ47 of 13.4 ± 0.4‰. Δ47 in human breath was 0.76  ± 0.03‰, similar to that of ambient Pasadena air and higher than that of the car exhaust signature.  相似文献   

9.
The chemical and isotopic composition of speleothem calcite and particularly that of stalagmites and flowstones is increasingly exploited as an archive of past environmental change in continental settings. Despite intensive research, including modelling and novel approaches, speleothem data remain difficult to interpret. A possible way foreword is to apply a multi-proxy approach including non-conventional isotope systems. For the first time, we here present a complete analytical dataset of magnesium isotopes (δ26Mg) from a monitored cave in NW Germany (Bunker Cave). The data set includes δ26Mg values of loess-derived soil above the cave (−1.0 ± 0.5‰), soil water (−1.2 ± 0.5‰), the carbonate hostrock (−3.8 ± 0.5‰), dripwater in the cave (−1.8 ± 0.2‰), speleothem low-Mg calcite (stalactites, stalagmites; −4.3 ± 0.6‰), cave loam (−0.6 ± 0.1‰) and runoff water (−1.8 ± 0.1‰) in the cave, respectively. Magnesium-isotope fractionation processes during weathering and interaction between soil cover, hostrock and solute-bearing soil water are non-trivial and depend on a number of variables including solution residence times, dissolution rates, adsorption effects and potential neo-formation of solids in the regolith and the carbonate aquifer. Apparent Mg-isotope fractionation between dripwater and speleothem low-Mg calcite is about 1000lnαMg-cc-Mg(aq) = −2.4‰. A similar Mg-isotope fractionation (1000lnαMg-cc-Mg(aq) ≈ −2.1‰) is obtained by abiogenic precipitation experiments carried out at aqueous Mg/Ca ratios and temperatures close to cave conditions. Accordingly, 26Mg discrimination during low-Mg calcite formation in caves is highly related to inorganic fractionation effects, which may comprise dehydration of Mg2+ prior to incorporation into calcite, surface entrapment of light isotopes and reaction kinetics. Relevance of kinetics is supported by a significant negative correlation of Mg-isotope fractionation with the precipitation rate for inorganic precipitation experiments.  相似文献   

10.
The isotopic composition of ancient wood may be a useful archive of some climatic or geochemical conditions of the past, but presently there are many uncertainties that constrain such interpretations. We sampled naturally growing, predominantly native trees in forested regions of North America and the Caribbean to evaluate the strength of the relationships among cellulose δ18O (δ18Ocel), relative humidity (RH), precipitation δ18O (δ18Oppt), and mean annual temperature (MAT) at the continental scale, and the general range of variability in δ18Ocel associated with site hydrologic conditions and species differences. We found up to 4‰ differences among different species growing at the same site, that conifer cellulose at a site is more enriched than angiosperm cellulose by 1.5‰ (p < 0.001), and that differences in landscape position, reflecting differing access to the water table, produced differences of <1‰ in δ18Ocel. At the continental scale, δ18Ocel was strongly influenced by modeled δ18Oppt (R2 = 0.80, p < 0.001). Average summer minimum RH (RHmin) combined with δ18Oppt explained more of the variability (R2 = 0.93, p < 0.001) in δ18Ocel across North American and Caribbean forests. MAT and δ18Ocel were also strongly correlated across North America (R = 0.91 and 0.95, p < 0.001, for angiosperms and conifers, respectively). The difference between δ18Oppt and δ18Ocel is not constant (varying from 35-44‰) and is inversely correlated with δ18Oppt. The relationships among δ18Oppt, RHmin, δ18Ocel, and MAT established for North America and the Caribbean applied reasonably well when δ18Ocel was used to estimate MAT and δ18Oppt in Asia, Europe, and South America, but there were important exceptions. The most accurate predictions of MAT and δ18Oppt from δ18Ocel require RHmin. Predictions of δ18Oppt and MAT made from δ18Ocel alone produced errors of up to 8‰ and 16 °C, respectively.  相似文献   

11.
Fractionation of oxygen and hydrogen isotopes in evaporating water   总被引:1,自引:0,他引:1  
Variations in oxygen and hydrogen isotope ratios of water and ice are powerful tools in hydrology and ice core studies. These variations are controlled by both equilibrium and kinetic isotope effects during evaporation and precipitation, and for quantitative interpretation it is necessary to understand how these processes affect the isotopic composition of water and ice. Whereas the equilibrium isotope effects are reasonably well understood, there is controversy on the magnitude of the kinetic isotope effects of both oxygen and hydrogen and the ratio between them. In order to resolve this disagreement, we performed evaporation experiments into air, argon and helium over the temperature range from 10 to 70 °C. From these measurements we derived the isotope effects for vapor diffusion in gas phase (εdiff(HD16O) for D/H and εdiff(H218O) for 18O/16O). For air, the ratio εdiff(HD16O)/εdiff(H218O) at 20 °C is 0.84, in very good agreement with Merlivat (1978) (0.88), but in considerable inconsistency with Cappa et al. (2003) (0.52). Our results support Merlivat’s conclusion that measured εdiff(HD16O)/εdiff(H218O) ratios are significantly different than ratios calculated from simplified kinetic theory of gas diffusion. On the other hand, our experiments with helium and argon suggest that this discrepancy is not due to isotope effects of molecular collision diameters. We also found, for the first time, that the εdiff(HD16O)/εdiff(H218O) ratio tends to increase with cooling. This new finding may have important implications to interpretations of deuterium excess (d-excess = δD − 8δ18O) in ice core records, because as we show, the effect of temperature on d-excess is of similar magnitude to glacial interglacial variations in the cores.  相似文献   

12.
The Southeast and the US Gulf Coast in particular are notably lacking isotope data in the water cycle despite the fact that moisture transport from the Gulf of Mexico (GOM) has a considerable influence on both regional and continental rainfall patterns. This study reports time-series of oxygen and hydrogen isotopes acquired over a 3-year period (2005-2008) from GOM-derived rainfall, cave dripwater and shallow groundwaters, and offers valuable insights on the links between factors controlling regional rainfall and the ubiquitous karst hydrology.Amount-weighted mean monthly rainwater δ18O and δD values in Tuscaloosa, Alabama range from 1.5 to −8.3‰ and −1.2 to −49.5‰, respectively, and show mean seasonal amplitudes of ∼4‰ (δ18O) and ∼25‰ (δD). In comparison d-excess values display large seasonal amplitudes of 10-20‰ resulting from differences in the degree of evaporation from falling raindrops between summer and winter months, and correlate well with the coeval air temperature (r2 = 0.59; p < 0.05). Deviations of the Gulf Coast Meteoric Water Line (GCMWL) slope and d-excess from the global meteoric water line (GMWL) are attributed to different rates of evaporation after condensation, and to humidity contrast between the cloud boundary layer and the surrounding atmosphere in the vapor source region, respectively. Rainfall amounts declined during the study interval from an excessive “wet” year, ascribed to six tropical storms incursions during an unusually active hurricane season in 2005, to an onset of a regional drought during 2007-2008 with monthly rainfall amounts substantially below normal values (30-year monthly means). An interannual trend of 18O and 2H enrichments is discerned from 2005 to 2008 (1.4‰ and 11.6‰, respectively) coeval with the decline in rainfall amounts.Dripwater samples from nearby DeSoto Caverns show weak δ18O and δD seasonal variations and record only 20% and 51% of the 18O and 2H enrichments, respectively, discerned in the rainwater 3-year time-trends. The seasonal and interannual amplitude attenuations in the dripwaters are attributed to a relatively thick overlying bedrock (∼30-40 m) and a relatively large, well-mixed, epikarst-storage reservoir. Residence time of water in the cave’s epikarst is estimated to be 1-3 months based on high-resolution flow-rate data.Our investigation suggests that global atmospheric circulation patterns (ENSO and Bermuda High) likely govern the interannual δ18O and δD isotope trends discerned in the water cycle compartments but much longer time-series are required to confirm our conjectures. The results of this study form a solid basis for future acquisition and interpretation of climate proxy records from regional speleothems.  相似文献   

13.
We measured δD values of long chain n-alkanes isolated from 30 surface soil samples along two elevation transects on the Tibetan Plateau differing in precipitation regime and water source. The East Asian Monsoon precipitation dominates the wetter regime on the eastern slope (from 1230 to 4300 m) of Gongga Shan on the eastern Tibetan Plateau. Precipitation from the Polar Westerlies dominates the drier region on the slope from 1900 to 5000 m in the West Kunlun Shan on the northwestern Tibetan Plateau. The decrease in δD value with elevation in the wetter region greatly exceeded that in drier region by, −1.9 ± 0.1‰/100 m and −1.4 ± 1.0‰/100 m respectively. The apparent fractionation between leaf wax and precipitation εwax-p values in the wetter region (ca. −164‰) were more negative than those in drier region (ca. −125‰ above 3200 m).We also measured δD values in leaves of six common living trees (values from −287‰ to −193‰) from Gongga Shan, ranging from about 2900-4200 m. The abundance-weighted average values of the n-alkanes (δDwax) show a strong reverse correlation with sample source elevation (R2 0.78 for soils from Gongga Shan; R2 0.85 for soils from West Kunlun Shan above 3200 m), suggesting that n-alkane δDwax faithfully records the precipitation δD and that the isotopic altitude effect of precipitation controls δDwax altitudinal gradients in the mountains. The data show a fairly strong monotonic dependency of n-alkane δD values on elevation for the eastern Plateau, but a complex relationship between n-alkane δD values and elevation for the northwestern Plateau. The δDwax values at sites below 3200 m from the Kunlun Shan area exhibit an unexpected positive correlation with elevation. The study confirms the potential for using sediment δDwax values to reconstruct paleo-elevation in wetter regions, but suggests caution in applying the approach to dry regions. Our results also show it is essential to consider the intricacy of the pattern of atmospheric circulation and water sources and their influence on the lapse rate of δD values with elevation.  相似文献   

14.
Deuterium and oxygen isotope fractionations between liquid and vapor water were experimentally-determined during evaporation of a NaCl solution (35 g L−1) as a function of water temperature and wind velocity. In the case of a null wind velocity, slopes of δD18O trajectories of residual waters hyperbolically decrease with increasing water temperatures in the range 23-47 °C. For wind velocities ranging from 0.8 to 2.2 m s−1, slopes of the δD18O trajectories linearly increase with increasing wind velocity at a given water temperature. These experimental results can be modeled by using Rayleigh distillation equations taking into account wind-related kinetics effects. Deuterium and oxygen isotope compositions of water inclusions trapped by the precipitated halite crystals were determined by micro-equilibration techniques.These isotopic compositions accurately reflect those of the surrounding residual waters during halite growth. Isotopic compositions of water inclusions in twenty natural halites from the Messinian Realmonte mine in Sicily suggest precipitation temperatures of that match the homogenization temperatures obtained by microthermometry (median = 34 ± 5 °C). The similarity between the measured and experimental slopes of the δD18O evaporation trajectories suggests that the effect of wind was negligible during the genesis of these halite deposits. Hydrogen and oxygen isotope compositions of water inclusions from Realmonte halite also define a linear trend whose extrapolation until intersection with the Mediterranean Meteoric Water Line allows the characterization of the water source with δD and δ18O values of −70 ± 10‰ and −11.5 ± 1.5‰, respectively. These results reveal that the huge amounts of salts deposited in Sicily result from the evaporation of seawater mixed with a dominant fraction (?50%) of meteoric waters most likely deriving from alpine fluvial discharge.  相似文献   

15.
Understanding the relationship between stable isotope signals recorded in speleothems (δ13C and δ18O) and the isotopic composition of the carbonate species in the soil water is of great importance for their interpretation in terms of past climate variability. Here the evolution of the carbon isotope composition of soil water on its way down to the cave during dissolution of limestone is studied for both closed and open-closed conditions with respect to CO2.The water entering the cave flows as a thin film towards the drip site. CO2 degasses from this film within approx. 10 s by molecular diffusion. Subsequently, chemical and isotopic equilibrium is established on a time scale of several 10-100 s. The δ13C value of the drip water is mainly determined by the isotopic composition of soil CO2. The evolution of the δ18O value of the carbonate species is determined by the long exchange time Tex, between oxygen in carbonate and water of several 10,000 s. Even if the oxygen of the CO2 in soil water is in isotopic equilibrium with that of the water, dissolution of limestone delivers oxygen with a different isotopic composition changing the δ18O value of the carbonate species. Consequently, the δ18O value of the rainwater will only be reflected in the drip water if it has stayed in the rock for a sufficiently long time.After the water has entered the cave, the carbon and oxygen isotope composition of the drip water may be altered by CO2-exchange with the cave air. Exchange times, , of about 3000 s are derived. Thus, only drip water, which drips in less than 3000 s onto the stalagmite surface, is suitable to imprint climatic signals into speleothem calcite deposited from it.Precipitation of calcite proceeds with time constants, τp, of several 100 s. Different rate constants and equilibrium concentrations for the heavy and light isotopes, respectively, result in isotope fractionation during calcite precipitation. Since Tex ? τp, exchange with the oxygen in the water can be neglected, and the isotopic evolution of carbon and oxygen proceed analogously. For drip intervals Td < 0.1τp the isotopic compositions of both carbon and oxygen in the solution evolve linearly in time. The calcite precipitated at the apex of the stalagmite reflects the isotopic signal of the drip water.For long drip intervals, when calcite is deposited from a stagnant water film, long drip intervals may have a significant effect on the isotopic composition of the DIC. In this case, the isotopic composition of the calcite deposited at the apex must be determined by averaging over the drip interval. Such processes must be considered when speleothems are used as proxies of past climate variability.  相似文献   

16.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

17.
Speleothem oxygen isotopes and growth rates are valuable proxies for reconstructing climate history. There is debate, however, about the conditions that allow speleothems to grow in oxygen isotope equilibrium, and about the correct equilibrium fractionation factors. We report results from a series of carbonate growth experiments in karst-analogue conditions in the laboratory. The setup closely mimics natural processes (e.g. precipitation driven by CO2-degassing, low ionic strength solution, thin solution film) but with a tight control on growth conditions (temperature, pCO2, drip rate, calcite saturation index and the composition of the initial solution). Calcite is dissolved in water in a 20,000 ppmV pCO2 environment. This solution is dripped onto glass plates (coated with seed-carbonate) in a lower pCO2 environment (<2500 ppmV), where degassing leads to calcite growth. Experiments were performed at 7, 15, 25 and 35 °C. At each temperature, calcite was grown at three drip rates (2, 6 and 10 drips per minute) on separate plates. The mass of calcite grown in these experiments varies with temperature (T in K) and drip rate (d_r in drips min−1) according to the relationship daily growth mass = 1.254 + 1.478 ∗ 10−9 ∗ e0.0679T + (e0.00248T − 2) ∗ (−0.779d_r2 + 10.05d_r + 11.69). This relationship indicates a substantial increase of growth mass with temperature, a smaller influence of drip rate on growth mass at low temperature and a non-linear relationship between drip rate and growth mass at higher temperatures. Low temperature, fast dripping conditions are found to be the most favourable for reducing effects associated with evaporation and rapid depletion of the dissolved inorganic carbon reservoir (rapid DIC-depletion). The impact of evaporation can be large so caves with high relative humidity are also preferable for palaeoclimate reconstruction. Even allowing for the maximum offsets that may have been induced by evaporation and rapid DIC-depletion, δ18O measured in some of our experiments remain higher than those predicted by Kim and O’Neil (1997). Our new results are well explained by equilibrium at a significantly higher αcalcite-water, with a kinetic-isotope effect that favours 16O incorporation as growth rate increases. This scenario agrees with recent studies by [Coplen, 2007] and [Dietzel et al., 2009]. Overall, our results suggest that three separate processes cause δ18O to deviate from true isotope equilibrium in the cave environment. Two of these drive δ18O to higher values (evaporation and rapid DIC-depletion) while one drives δ18O to lower values (preferential incorporation of 16O in the solid carbonate at faster growth rates). While evaporation and DIC-depletion can be avoided in some settings, the third may be inescapable in the cave environment and means that any temperature to δ18O relationship is an approximation. The controlled conditions of the present experiments also display limitations in the use of the Hendy test to identifying equilibrium growth.  相似文献   

18.
Evaporite outcrops are rare in the Basque Cantabrian basin due to a rainy climate, but saline springs with total dissolved solids ranging from 0.8 to 260 g/L are common and have long been used to supply spas and salterns. New and existing hydrochemistry of saline springs are used to provide additional insight on the origin and underground extent of their poorly known source evaporites. Saline water hydrochemistry is related to dissolution of halite and gypsum from two evaporitic successions (Triassic “Keuper” and Lower Cretaceous “Wealden”), as supported by rock samples from outcrops and oil exploration drill cuttings. The δ34S value of gypsum in the Keuper evaporites and sulfate in the springs is δ34SSO4 = 14.06 ± 1.07‰ and δ18OSO4 = 13.41 ± 1.44‰, and the relationship between Cl/Br ratio of halite and water shows that waters have dissolved halite with Br content between 124 and 288 ppm. The δ34S value of gypsum in the Wealden evaporites and sulfate in the springs is δ34SSO4 = 19.66 ± 1.76‰, δ18OSO4 = 14.93 ± 2.35‰, and the relationship between Cl/Br ratio of halite and water shows that waters have dissolved halite with Br content between 15 and 160 ppm. Wealden evaporites formed in a continental setting after the dissolution of Keuper salt. Gypsum δ34SSO4 and δ18OSO4 modification from Keuper to Wealden evaporites was due mainly to bacterial SO4 reduction in an anoxic, organic matter-rich environment. Saline springs with Wealden δ34SSO4 values are present in a 70 × 20 km wide area. Saline water temperatures, their δ2HH2O and δ18OH2O values, and the geological structure defines a hydrogeological model, where meteoric water recharges at heights up to 620 m above spring levels and circulates down to 720 m below them, thereby constraining the height range of evaporite dissolution. Groundwater flow towards saline springs is driven by gravity and buoyancy forces constrained by a thrust and fault network.  相似文献   

19.
We analyzed the deuterium composition of individual plant-waxes in lake sediments from 28 watersheds that span a range of precipitation D/H, vegetation types and climates. The apparent isotopic fractionation (εa) between plant-wax n-alkanes and precipitation differs with watershed ecosystem type and structure, and decreases with increasing regional aridity as measured by enrichment of 2H and 18O associated with evaporation of lake waters. The most negative εa values represent signatures least affected by aridity; these values were −125 ± 5‰ for tropical evergreen and dry forests, −130‰ for a temperate broadleaf forest, −120 ± 9‰ for the high-altitude tropical páramo (herbs, shrubs and grasses), and −98 ± 6‰ for North American montane gymnosperm forests. Minimum εa values reflect ecosystem-dependent differences in leaf water enrichment and soil evaporation. Slopes of lipid/lake water isotopic enrichments differ slightly with ecosystem structure (i.e. open shrublands versus forests) and overall are quite small (slopes = 0-2), indicating low sensitivity of lipid δD variations to aridity compared with coexisting lake waters. This finding provides an approach for reconstructing ancient precipitation signatures based on plant-wax δD measurements and independent proxies for lake water changes with regional aridity. To illustrate this approach, we employ paired plant-wax δD and carbonate-δ18O measurements on lake sediments to estimate the isotopic composition of Miocene precipitation on the Tibetan plateau.  相似文献   

20.
Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains (Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ18Owater = +700‰) and depleted water (δ18Owater = −40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation (εS > −13.2‰), δ18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 (εS < −22.7‰) the residual sulfate showed an increase of the sulfate δ18O close to the values of the enriched water of +700‰. In the experiments with δ18O-depleted water, the oxygen isotope values in the residual sulfate stayed fairly constant for strains Desulfovibrio desulfuricans, Desulfobacca acetoxidans and Desulfonatronovibrio hydrogenovorans. However, strain TRM1, which exhibits the lowest sulfur isotope fractionation factor (εS < −38.7‰) showed slightly decreasing δ18O values.Our results give strong evidence that the oxygen atoms of sulfate exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5′-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the “recycled” sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the stable isotope enrichment factor for sulfur measured during sulfate reduction. The reoxidation of intermediates of the sulfate reduction pathway does also strongly influence the sulfur stable isotope enrichment factor. This aforesaid reoxidation is probably dependent on the metabolic conversion of the substrate and therefore also influences the stable isotope fractionation factor indirectly in a rate dependent manner. However, this effect is only indirect. The sulfur isotope enrichment factors for the kinetic reactions themselves are probably not rate dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号