首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The mobility and toxicity of Cr within surface and subsurface environments is diminished by the reduction of Cr(VI) to Cr(III). The reduction of hexavalent chromium can proceed via chemical or biological means. Coupled processes may also occur including reduction via the production of microbial metabolites, including aqueous Fe(II). The ultimate pathway of Cr(VI) reduction will dictate the reaction products and hence the solubility of Cr(III). Here, we investigate the fate of Cr following a coupled biotic-abiotic reduction pathway of chromate under iron-reducing conditions. Dissimilatory bacterial reduction of two-line ferrihydrite indirectly stimulates reduction of Cr(VI) by producing aqueous Fe(II). The product of this reaction is a mixed Fe(III)-Cr(III) hydroxide of the general formula Fe1−xCrx(OH)3 · nH2O, having an α/β-FeOOH local order. As the reaction proceeds, Fe within the system is cycled (i.e., Fe(III) within the hydroxide reaction product is further reduced by dissimilatory iron-reducing bacteria to Fe(II) and available for continued Cr reduction) and the hydroxide products become enriched in Cr relative to Fe, ultimately approaching a pure Cr(OH)3 · nH2O phase. This Cr purification process appreciably increases the solubility of the hydroxide phases, although even the pure-phase chromium hydroxide is relatively insoluble.  相似文献   

2.
《Applied Geochemistry》1997,12(4):367-376
Borehole samples of pulverized fuel ash (PFA) were taken from the unsaturated zone in a disposal mound at a decommissioned power station in the UK. The aim was to investigate the long-term natural weathering reactions of PFA and the chemical evolution of the contained porewaters.Concentrations of most species, including Al, Na, K, Ca, SO4, B, Co, Cr, Li, Mo, Ni, Pb and Sr in the porewaters, increase with borehole depth, consistent with these elements being released from the PFA through continued weathering reactions with infiltrating porewaters. The concentration of Ba shows a near-constant value throughout the depth range investigated and this element is thought to have achieved equilibrium with respect to a sulphate phase. The Ca and S in the PFA show depletion near-surface, consistent with the higher porewater concentrations with depth. Using mass balance calculations for these two elements, approximate infiltration rates are obtained. Other elements which are depleted in near-surface samples are Cu, Mn, Ni, Pb and Zn. Higher concentrations, particularly of Na2O and K2O, in near-surface borehole samples demonstrate, however, that the ash was probably not homogeneous at the time of emplacement. Other elements in solution, such as Cl and NO3, show peak concentrations in the depth profiles, which are thought to represent a time-dependent migration of an anthropogenic input, probably fertiliser. No significant changes were detected in the mineralogy using XRD and SEM.Porewater analyses were processed using a geochemical modelling program, WATEQ4F, to investigate equilibrium relationships and to identify potential solubility controlling solid phases. Several solid phases were identified, including Al(OH)3 for Al, Fe(OH)3(am) for Fe and CaSO4.2H2O (gypsum) for Ca and SO4.  相似文献   

3.
4.
The solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3 · 26H2O) was measured in a series of precipitation and dissolution experiments at 20 °C and at pH-values between 11.0 and 14.0 using synthesised material. A time-series study showed that equilibrium was reached within 180 days of ageing. After equilibrating, the solid phases were analysed by XRD and TGA while the aqueous solutions were analysed by ICP-OES (calcium, sulphur) and ICP-MS (iron). Fe-ettringite was found to be stable up to pH 13.0. At higher pH-values Fe-monosulphate (Ca4[Fe(OH)6]2(SO4) · 6H2O) and Fe-monocarbonate (Ca4[Fe(OH)6]2(CO3) · 6H2O) are formed. The solubilities of these hydrates at 25 °C are:   相似文献   

5.
Tidal inundation was restored to a severely degraded tropical acid sulfate soil landscape and subsequent changes in the abundance and fractionation of Al, Fe and selected trace metals were investigated. After 5 a of regular tidal inundation there were large decreases in water-soluble and exchangeable Al fractions within former sulfuric horizons. This was strongly associated with decreased soil acidity and increases in pH, suggesting pH-dependent immobilisation of Al via precipitation as poorly soluble phases. The water-soluble fractions of Fe, Zn, Ni and Mn also decreased. However, there was substantial enrichment (2–5×) of the reactive Fe fraction (FeR; 1 M HCl extractable) near the soil surface, plus a closely corresponding enrichment of 1 M HCl extractable Cr, Zn, Ni and Mn. Surficial accumulations of Fe(III) minerals in the inter-tidal zone were poorly crystalline (up to 38% FeR) and comprised mainly of schwertmannite (Fe8O8(OH)6SO4) with minor quantities of goethite (α-FeOOH) and lepidocrocite (γ-FeOOH). These Fe (III) mineral accumulations provide an effective substrate for the adsorption/co-precipitation and accumulation of trace metals. Arsenic displayed contrary behaviour to trace metals with peak concentrations (∼60 μg g−1) near the redox minima. Changes in the abundance and fractionation of the various metals can be primarily explained by the shift in the geochemical regime from oxic–acidic to reducing-circumneutral conditions, combined with the enrichment of reactive Fe near the soil surface. Whilst increasing sequestration of trace metals via sulfidisation is likely to occur over the long-term, the current abundance of reactive Fe near the sediment–water interface favours a dynamic environment with respect to metals in the tidally inundated areas.  相似文献   

6.
Schwertmannite (Fe8O8(OH)6SO4) is a common Fe(III)-oxyhydroxysulfate mineral in acid-sulfate systems, where its formation and fate strongly influence water quality. The present study examines transformation of schwertmannite to goethite (FeOOH), as catalyzed by interactions with Fe(II) in anoxic aquatic environments. This study also evaluates the role of the Fe(II) pathway in influencing the formation of iron-sulfide minerals in such environments. At pH > 5, the rates of Fe(II)-catalyzed schwertmannite transformation were several orders of magnitude faster than transformation in the absence of Fe(II). Complete transformation of schwertmannite occurred within only 3-5 h at pH > 6 and Fe(II)(aq) ? 5 mmol L−1. Model calculations indicate that the Fe(II)-catalyzed transformation of schwertmannite to goethite greatly decreases the reactivity of the Fe(III) pool, thereby favoring SO4-reduction and facilitating the formation of iron-sulfide minerals (particularly mackinawite, tetragonal FeS). Examination of in situ sediment geochemistry in an acid-sulfate system revealed that the rapid Fe(II)-catalyzed transformation was consistent with an abrupt shift from an acidic Fe(III)-reducing regime with abundant schwertmannite near the sediment surface, to a near-neutral mackinawite-forming regime where goethite was dominant. This study demonstrates that the Fe(II) pathway exerts a major influence on schwertmannite transformation and iron-sulfide formation in anoxic acid-sulfate systems. These findings have important implications for understanding acidity dynamics and trace element mobility in such systems.  相似文献   

7.
Mixed-valent Fe(II),Fe(III)-layered hydroxide, known as green rust, was synthesized from slightly basic, sodium sulphate solutions in an oxygen-free glove box. Solution conditions were monitored with pH and Eh electrodes and optimized to ensure a pure sulphate green-rust phase. The solid was characterised using Mössbauer spectroscopy, X-ray diffraction, scanning electron microscopy and atomic force microscopy. The composition of the solution from which the green rust precipitated was established by mass and absorption spectroscopy. The sulphate form of green rust is composed of brucite-like layers with Fe(II) and Fe(III) in an ordered distribution. The interlayers contain sulphate, water and sodium in an arrangement characteristic for the nikischerite group. The crystal structure is highly disordered by stacking faults. The composition, formula and crystallographic parameters are: NaFe(II)6Fe(III)3(SO4)2(OH)18·12H2O, space group P-3, a = 9.528(6) Å, c = 10.968(8) Å and Z = 1. Green rust sodium sulphate, GRNa,SO4, crystallizes in thin, hexagonal plates. Particles range from less than 50 nm to 2 μm in diameter and are 40 nm thick or less. The material is redox active and reaction rates are fast. Extremely small particle size and high surface area contribute to rapid oxidation, transforming green rust to an Fe(III)-phase within minutes.  相似文献   

8.
Siderite (FeCO3) is an important reduced phase iron mineral and end product of bacteria anaerobic respiration. This study addresses its dissolution behavior in the presence of the oxidant chromate, which is a common environmental contaminant. Macroscopic dissolution experiments combined with microscopic observations by atomic force microscopy show that at pH < 4.5 the dissolution rate with chromate is slower than that in control solution without chromate. Isolated deep dissolution pits and clustered shallow pits occur simultaneously with surface precipitation. The implication is that the surface precipitate inhibits further dissolution. For 5 < pH < 9.5, the slowest dissolution and the fastest precipitation rates are observed, both at edge steps and on terraces. For pH > 10, the dissolution rate in the presence of chromate exceeds that of the control, plausibly due to electron transfer facilitated by [Fe3+(OH)4]-. Dissolution and re-precipitation of round hillocks are observed. X-ray photoelectron spectroscopy indicates the presence of Cr(III) as well as reaction products in a hydroxide form. Based on the redox reaction mechanism, macroscopic dissolution behavior, and previous studies on the reaction products of Fe(II) with Cr(VI), we propose the formation of a low solubility nano-sized Cr(III)-Fe(III)-hydroxide as the surface precipitate. Results from this study provide a basis for understanding and quantifying the interactions between reduced-iron minerals and aqueous-phase oxidants.  相似文献   

9.
The identification of the mineral species controlling the solubility of Al in acidic waters rich in sulfate has presented researchers with several challenges. One of the particular challenges is that the mineral species may be amorphous by X-ray diffraction. The difficulty in discerning between adsorbed or structural sulfate is a further complication. Numerous studies have employed theoretical calculations to determine the Al mineral species forming in acid sulfate soil environments. The vast majority of these studies indicate the formation of a mineral species matching the stoichiometry of jurbanite, Al(OH)SO4·5H2O. Much debate, however, exists as to the reality of jurbanite forming in natural environments, particularly in view of its apparent rare occurrence. In this work the use of Al, S and O K-edge XANES spectroscopy, in combination with elemental composition analyses of groundwater precipitates and a theoretical analysis of soluble Al concentrations ranging from pH 3.5 to 7, were employed to determine the mineral species controlling the solubility of Al draining from acid sulfate soils into Blacks Drain in north-eastern New South Wales, Australia. The results indicate that a mixture of amorphous Al hydroxide (Al(OH)3) and basaluminite (Al4(SO4)(OH)10·5H2O) was forming. The use of XANES spectroscopy is particularly useful as it provides insight into the nature of the bond between sulfate and Al, and confirms the presence of basaluminite. This counters the possibility that an Al hydroxide species, with appreciable amounts of adsorbed sulfate, is forming within these groundwaters.Below approximately pH 4.5, prior to precipitation of this amorphous Al(OH)3/basaluminite mixture, our studies indicate that the Al3+ activity of these acidic sulfate-rich waters is limited by the availability of dissolved Al from exchangeable and amorphous/poorly crystalline mineral species within adjacent soils. Further evidence suggests the Al3+ activity below pH 4.5 is then further controlled by dilution with either rainwater or pH 6-8 buffered estuarine water, and not a notional Al(OH)SO4 mineral species.  相似文献   

10.
This study investigated possible geochemical reactions during titration of a contaminated groundwater with a low pH but high concentrations of aluminum, calcium, magnesium, manganese, and trace contaminant metals/radionuclides such as uranium, technetium, nickel, and cobalt. Both Na-carbonate and hydroxide were used as titrants, and a geochemical equilibrium reaction path model was employed to predict aqueous species and mineral precipitation during titration. Although the model appeared to be adequate to describe the concentration profiles of some metal cations, solution pH, and mineral precipitates, it failed to describe the concentrations of U during titration and its precipitation. Most U (as uranyl, UO22+) as well as Tc (as pertechnetate, TcO4) were found to be sorbed and coprecipitated with amorphous Al and Fe oxyhydroxides at pH below ∼5.5, but slow desorption or dissolution of U and Tc occurred at higher pH values when Na2CO3 was used as the titrant. In general, the precipitation of major cationic species followed the order of Fe(OH)3 and/or FeCo0.1(OH)3.2, Al4(OH)10SO4, MnCO3, CaCO3, conversion of Al4(OH)10SO4 to Al(OH)3,am, Mn(OH)2, Mg(OH)2, MgCO3, and Ca(OH)2. The formation of mixed or double hydroxide phases of Ni and Co with Al and Fe oxyhydroxides was thought to be responsible for the removal of Ni and Co in solution. Results of this study indicate that, although the hydrolysis and precipitation of a single cation are known, complex reactions such as sorption/desorption, coprecipitation of mixed mineral phases, and their dissolution could occur simultaneously. These processes as well as the kinetic constraints must be considered in the design of the remediation strategies and modeling to better predict the activities of various metal species and solid precipitates during pre- and post-groundwater treatment practices.  相似文献   

11.
The thermochemistry of jarosite-alunite and natrojarosite-natroalunite solid solutions was investigated. Members of these series were either coprecipitated or synthesized hydrothermally and were characterized by XRD, FTIR, electron microprobe analysis, ICP-MS, and thermal analysis. Partial alkali substitution and vacancies on the Fe/Al sites were observed in all cases, and the solids studied can be described by the general formula K1-x-yNay(H3O)xFezAlw(SO4)2(OH)6-3(3-z-w)(H2O)3(3-z-w). A strong preferential incorporation of Fe over Al in the jarosite/alunite structure was observed. Heats of formation from the elements, ΔH°f, were determined by high-temperature oxide melt solution calorimetry. The solid solutions deviate slightly from thermodynamic ideality by exhibiting positive enthalpies of mixing in the range 0 to +11 kJ/mol. The heats of formation of the end members of both solid solutions were derived. The values ΔH°f = −3773.6 ± 9.4 kJ/mol, ΔH°f = −4912.2 ± 24.2 kJ/mol, ΔH°f = −3734.6 ± 9.7 kJ/mol and ΔH°f = −4979.7 ± 7.5kJ/mol were found for K0.85(H3O)0.15Fe2.5(SO4)2(OH)4.5(H2O)1.5, K0.85(H3O)0.15Al2.5(SO4)2(OH)4.5(H2O)1.5, Na0.7(H3O)0.3Fe2.7(SO4)2(OH)5.1(H2O)0.9, and Na0.7(H3O)0.3Al2.7(SO4)2(OH)5.1(H2O)0.9 respectively. To our knowledge, this is the first experimentally-based report of ΔH°f for such nonstoichiometric alunite and natroalunite samples. These thermodynamic data should prove helpful to study, under given conditions, the partitioning of Fe and Al between the solids and aqueous solution.  相似文献   

12.
Natural attenuation of arsenic by simple adsorption on oxyhydroxides may be limited due to competing oxyanions, but uptake by coprecipitation may locally sequester arsenic. We have systematically investigated the mechanism and mode (adsorption versus coprecipitation) of arsenic uptake in the presence of carbonate and phosphate, from solutions of inorganic composition similar to many groundwaters. Efficient arsenic removal, >95% As(V) and ∼55% in initial As(III) systems, occurred over 24 h at pHs 5.5-6.5 when Fe(II) and hydroxylapatite (Ca5(PO4)3OH, HAP) “seed” crystals were added to solutions that had been previously reacted with HAP, atmospheric CO2(g) and O2(g). Arsenic adsorption was insignificant (<10%) on HAP without Fe(II). Greater uptake in the As(III) system in the presence of Fe(II) was interpreted as due to faster As(III) to As(V) oxidation by molecular oxygen in a putative pathway involving Fe(IV) and As(IV) intermediate species. HAP acts as a pH buffer that allows faster Fe(II) oxidation. Solution analyses coupled with high-resolution transmission electron microscopy (HRTEM), X-ray Energy-Dispersive Spectroscopy (EDS), and X-Ray Absorption Spectroscopy (XAS) indicated the precipitation of sub-spherical particles of an amorphous, chemically-mixed, nanophase, FeIII[(OH)3(PO4)(AsVO4)]·nH2O or FeIII[(OH)3( PO4)(AsVO4)(AsIIIO3)minornH2O, where AsIIIO3 is a minor component.The mode of As uptake was further investigated in binary coprecipitation (Fe(II) + As(III) or P), and ternary coprecipitation and adsorption experiments (Fe(II) + As(III) + P) at variable As/Fe, P/Fe and As/P/Fe ratios. Foil-like, poorly crystalline, nanoparticles of FeIII(OH)3 and sub-spherical, amorphous, chemically-mixed, metastable nanoparticles of FeIII[(OH)3, PO4nH2O coexisted at lower P/Fe ratios than predicted by bulk solubilities of strengite (FePO4·2H2O) and goethite (FeOOH). Uptake of As and P in these systems decreased as binary coprecipitation > ternary coprecipitation > ternary adsorption.Significantly, the chemically-mixed, ferric oxyhydroxide-phosphate-arsenate nanophases found here are very similar to those found in the natural environment at slightly acidic to circum-neutral pHs in sub-oxic to oxic systems, such phases may naturally attenuate As mobility in the environment, but it is important to recognize that our system and the natural environment are kinetically evolving, and the ultimate environmental fate of As will depend on the long-term stability and potential phase transformations of these mixed nanophases. Our results also underscore the importance of using sufficiently complex, yet systematically designed, model systems to accurately represent the natural environment.  相似文献   

13.
X-ray Absorption Fine Structure (XAFS) spectroscopy was used in combination with high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), X-ray energy dispersive spectroscopy (XEDS), X-ray powder diffraction, and Mössbauer spectroscopy to obtain detailed information on arsenic and iron speciation in the products of anaerobic reduction of pure and As(V)- or As(III)-adsorbed lepidocrocite (γ-FeOOH) by Shewanella putrefaciens ATCC 12099. We found that this strain of S. putrefaciens is capable of using Fe(III) in lepidocrocite and As(V) in solution or adsorbed on lepidocrocite surfaces as electron acceptors. Bioreduction of lepidocrocite in the absence of arsenic resulted in the formation of hydroxycarbonate green rust 1 [FeII4FeIII2(OH)12CO3: GR1(CO3)], which completely converted into ferrous-carbonate hydroxide (FeII2(OH)2CO3: FCH) over nine months. This study thus provides the first evidence of bacterial reduction of stoichiometric GR1(CO3) into FCH. Bioreduction of As(III)-adsorbed lepidocrocite also led to the formation of GR1(CO3) prior to formation of FCH, but the presence of As(III) slows down this transformation, leading to the co-occurrence of both phases after 22-month of aging. At the end of this experiment, As(III) was found to be adsorbed on the surfaces of GR1(CO3) and FCH. After five months, bioreduction of As(V)-bearing lepidocrocite led directly to the formation of FCH in association with nanometer-sized particles of a minor As-rich Fe(OH)2 phase, with no evidence for green rust formation. In this five-month experiment, As(V) was fully converted to As(III), which was dominantly sorbed at the surface of the Fe(OH)2 nanoparticles as oligomers binding to the edges of Fe(OH)6 octahedra at the edges of the octahedral layers of Fe(OH)2. These multinuclear As(III) surface complexes are characterized by As-As pairs at a distance of 3.32 ± 0.02 Å and by As-Fe pairs at a distance of 3.50 ± 0.02 Å and represent a new type of As(III) surface complex. Chemical analyses show that the majority of As(III) produced in the experiments with As present is associated with iron-bearing hydroxycarbonate or hydroxide solids, reinforcing the idea that, at least under some circumstances, bacterial reduction can promote As(III) sequestration instead of mobilizing it into solution.  相似文献   

14.
《Applied Geochemistry》1996,11(3):409-423
Determining metal bioavailability is critical in assessing the necessity to remediate contaminated sediments. In the Halls Brook Holding Area Pond (HBHAP) sapropel, As (3000 mg/kg), and Cr (1400 mg/ kg), are sequestered by amorphous Fe(OH)3 (KdAs=560; KfCr=59,0001/kg), while Pb solubility is limited by PbS(am). Fillet As concentrations in detritivorous and omnivorous fish were similar in the HBHAP (1.19 mg/kg), and the adjacent unimpacted Phillips Pond (1.18 mg/kg). Cr and Pb in both HBHAP and Phillips Pond fish were below analytical detection limits, except for one (0.73 mg/kj Pb), in the HBHAP. The low sediment bioaccumulation factors for As, Cr, and Pb (6.5 × 10−4, < 1.1 × 10, and 1.8 × 10−6, respectively in HBHAP) suggest that the sediment acts to sequester metals, rendering them non-bioavailable due to precipitation of solids, and sorption to iron phases.  相似文献   

15.
Multiphase solid inclusions in minerals formed at ultra-high-pressure (UHP) provide evidence for the presence of fluids during deep subduction. This study focuses on barian mica, which is a common phase in multiphase solid inclusions enclosed in garnet from mantle-derived UHP garnet peridotites in the Saxothuringian basement of the northern Bohemian Massif. The documented compositional variability and substitution trends provide constraints on crystallization medium of the barian mica and allow making inferences on its source. Barian mica in the multiphase solid inclusions belongs to trioctahedral micas and represents a solid solution of phlogopite KMg3(Si3Al)O10(OH)2, kinoshitalite BaMg3(Al2Si2)O10(OH)2 and ferrokinoshitalite BaFe3(Al2Si2)O10(OH)2. In addition to Ba (0.24–0.67 apfu), mica is significantly enriched in Mg (XMg ~ 0.85 to 0.95), Cr (0.03–0.43 apfu) and Cl (0.04–0.34 apfu). The substitution vector involving Ba in the I-site which describes the observed chemical variability can be expressed as BaFeIVAlClK?1Mg?1Si?1(OH)?1. A minor amount of Cr and VIAl enters octahedral sites following a substitution vector VI(Cr,Al)2VI(Mg,Fe)?3 towards chromphyllite and muscovite. As demonstrated by variable Ba and Cl contents positively correlating with Fe, barian mica composition is partly controlled by its crystal structure. Textural evidence shows that barian mica, together with other minerals in multiphase solid inclusions, crystallized from fluids trapped during garnet growth. The unusual chemical composition of mica reflects the mixing of two distinct sources: (1) an internal source, i.e. the host peridotite and its garnet, providing Mg, Fe, Al, Cr, and (2) an external source, represented by crustal-derived subduction-zone fluids supplying Ba, K and Cl. At UHP–UHT conditions recorded by the associated diamond-bearing metasediments (c. 1100 °C and 4.5 GPa) located above the second critical point in the pelitic system, the produced subduction-zone fluids transporting the elements into the overlying mantle wedge had a solute-rich composition with properties of a hydrous melt. The occurrence of barian mica with a specific chemistry in barium-poor mantle rocks demonstrates the importance of its thorough chemical characterization.  相似文献   

16.
Radioactive core samples containing elevated concentrations of Cr from a high level nuclear waste plume in the Hanford vadose zone were studied to asses the future mobility of Cr. Cr(VI) is an important subsurface contaminant at the Hanford Site. The plume originated in 1969 by leakage of self-boiling supernate from a tank containing REDOX process waste. The supernate contained high concentrations of alkali (NaOH ≈ 5.25 mol/L), salt (NaNO3/NaNO2 >10 mol/L), aluminate [Al(OH)4 = 3.36 mol/L], Cr(VI) (0.413 mol/L), and 137Cs+ (6.51 × 10−5 mol/L). Water and acid extraction of the oxidized subsurface sediments indicated that a significant portion of the total Cr was associated with the solid phase. Mineralogic analyses, Cr valence speciation measurements by X-ray adsorption near edge structure (XANES) spectroscopy, and small column leaching studies were performed to identify the chemical retardation mechanism and leachability of Cr. While X-ray diffraction detected little mineralogic change to the sediments from waste reaction, scanning electron microscopy (SEM) showed that mineral particles within 5 m of the point of tank failure were coated with secondary, sodium aluminosilicate precipitates. The density of these precipitates decreased with distance from the source (e.g., beyond 10 m). The XANES and column studies demonstrated the reduction of 29-75% of the total Cr to insoluble Cr(III), and the apparent precipitation of up to 43% of the Cr(VI) as an unidentified, non-leachable phase. Both Cr(VI) reduction and Cr(VI) precipitation were greater in sediments closer to the leak source where significant mineral alteration was noted by SEM. These and other observations imply that basic mineral hydrolysis driven by large concentrations of OH in the waste stream liberated Fe(II) from the otherwise oxidizing sediments that served as a reductant for CrO42−. The coarse-textured Hanford sediments contain silt-sized mineral phases (biotite, clinochlore, magnetite, and ilmenite) that are sources of Fe(II). Other dissolution products (e.g., Ba2+) or Al(OH)4 present in the waste stream may have induced Cr(VI) precipitation as pH moderated through mineral reaction. The results demonstrate that a minimum of 42% of the total Cr inventory in all of the samples was immobilized as Cr(III) and Cr(VI) precipitates that are unlikely to dissolve and migrate to groundwater under the low recharge conditions of the Hanford vadose zone.  相似文献   

17.
The molecular-level processes that control green rust sodium sulphate (GRNa,SO4) reaction with chromate were studied using high-resolution techniques. Changes in solid morphology, structure and composition were observed with atomic force microscopy, transmission electron microscopy and X-ray diffraction. The results suggest the following mechanisms: Chromate replaces sulphate in the GR interlayer and is reduced by Fe(II). Formation of sparingly soluble Cr(III)-solid blocks further chromate entry, but Cr(VI) reduction continues at the GR solid/solution interface. Electron transfer from the centre of the GR crystals to the surface facilitates rapid reaction. Less stable zones of the reacted GRNa,SO4 dissolve and amorphous Cr(III),Fe(III)-solid forms. During equilibration, Cr-substituted goethite evolves in association with remaining GRNa,SO4, fed by material from the amorphous phase and dissolving oxidised GR. In contrast, previous Cr(VI) experiments with the carbonate form of GR, GRCO3, have suggested only reaction and deposition at the surface. From the perspective of environmental protection, these results have important implications. Goethite is sparingly soluble and the inclusion of Cr(III) as a solid-solution makes it even less soluble. Compared to Cr adsorbed at the surface of an Fe(III)-phase, Cr(III) incorporated in goethite is much less likely to be released back to groundwater.  相似文献   

18.
Jarosite is an important mineral on Earth, and possibly on Mars, where it controls the mobility of iron, sulfate and potentially toxic metals. Atomistic simulations have been used to study the incorporation of Al3+, and the M2+ impurities Cd, Cu and Zn, in the (0 1 2) and (0 0 1) surfaces of jarosite. The calculations show that the incorporation of Al on an Fe site is favorable on all surfaces in which terminal Fe ions are exposed, and especially on the (0 0 1) [Fe3(OH)3]6+ surface. Incorporation of Cd, Cu or Zn on a K site balanced by a K vacancy is predicted to stabilize the surfaces, but calculated endothermic solution energies and the high degree of distortion of the surfaces following incorporation suggest that these substitutions will be limited. The calculations also suggest that incorporation of Cd, Cu and Zn on an Fe site balanced by an OH vacancy, or by coupled substitution on both K and Fe sites, is unfavorable, although this might be compensated for by growth of a new layer of jarosite or goethite, as predicted for bulk jarosite. The results of the simulations show that surface structure will exert an influence on uptake of impurities in the order Cu > Cd > Zn, with the most favorable surfaces for incorporation being (0 1 2) [KFe(OH)4]0 and (0 0 1) [Fe3(OH)3]6+.  相似文献   

19.
The risk of groundwater contamination by chromate at a former chromite ore processing industrial site in Rivera (Switzerland) was assessed by determining subsoil Cr(VI) concentrations and tracking naturally occurring Cr(VI) reduction with Cr isotopes. Using a hot alkaline extraction procedure, a total Cr(VI) contamination of several 1000 kg was estimated. Jarosite, KFe3((SO4)x(CrO4)1−x)2(OH)6, and chromatite (CaCrO4) were identified as Cr(VI) bearing mineral phases using XRD, both limiting groundwater Cr(VI) concentrations. To track assumed Cr(VI) reduction at field scale δ53Cr values of contaminated subsoil samples in addition to groundwater δ53Cr data are used for the first time. The measurements showed a fractionation of groundwater δ53Cr values towards positive values and subsoil δ53Cr towards negative values confirming reduction of soluble Cr(VI) to insoluble Cr(III). Using a Rayleigh fractionation model, a current Cr(VI) reduction efficiency of approximately 31% along a 120 m long flow path was estimated at an average linear groundwater velocity of 3.3 m/d. Groundwater and subsoil δ53Cr values were compared with a site specific Rayleigh fractionation model proposing that subsoil δ53Cr values can possibly be used to track previous higher Cr(VI) reduction efficiency during the period of industrial activity. The findings strongly favor monitored natural attenuation to be part of the required site remediation measures.  相似文献   

20.
《Applied Geochemistry》1987,2(2):231-241
Contamination of ground water in domestic water wells has been documented in the vicinity of a uranium mill near Canon City, south-central Colorado, U.S.A. Acidic tailings fluid (raffinate) was passed through a core collected from the subjacent calcite-bearing sandstone to evaluate the effect of interactions between the raffinate and bedrock on the fluid pH, and on the mobility of Al, Ca, Cl, Fe, Mn, SO4, and Zn.In the experiment, the pH initially increased from 2.3 to 8.0 as calcite in the core dissolved and neutralized the raffinate. Concurrently, amorphous ferric hydroxide precipitated in the micro-environment surrounding the reacting carbonate grains. This led to a gradual decrease in pH to 3.4 due to the armoring of the remnant calcite cement by amorphous ferric hydroxide.The results were modeled using the mass transfer computer program, MINTEQ. The pH was modeled by simulating the dissolution of calcite in the raffinate, while the Eh was set at the values measured in the experiment. The behavior of Mn was described by the dissolution of manganocalcite, but an adequate model for dissolved Ca required both calcite dissolution and ion exchange of Ca for Na. Aluminum behavior was simulated by assuming a hydroxide solubility constraint above pH 5.7 and by AlOHSO4 in more acidic regimes. Iron was modeled by the precipitation of an amorphous ferric hydroxide. From chemical analyses, measurements of Eh and pH, and MINTEQ calculations, the log Ksp of the amorphous ferric hydroxide in the experiment was determined to be from −33.5 to −37.6. Zinc was modeled by means of the triple-layer sorption algorithm in MINTEQ, assuming the amorphous ferric hydroxide phase to be the sorbent.Comparison between the experimental effluent and ground-water metal concentrations downgradient from the site are in general agreement. Specifically, SO4 appears to be the best indicator of the encroaching front of acidic contaminants in the subsurface.The general concurrence between the observed experimental results, the computed model predictions, and the downgradient ground-water metal concentrations indicate that mass transfer models such as MINTEQ are useful in predicting the interaction between bedrock and acidic tailings fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号