首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The voluminous Pleistocene—Recent Taupo rhyolites typically contain phenocrysts of plagioclase (oligoclase-labradorite), quartz, titanomagnetite, ilmenite, and ferromagnesian silicates. Ferromagnesian assemblages correlate with well defined Fe-Ti oxide equilibration temperature ranges and allow the rhyolites to be subdivided as follows: (1) Cummingtonite (c)—calcic hornblende (hb)—orthopyroxene (opx); 725–755°C, (2) Hb-opx, 750–825°C, (3) Biotite-hb-(c-opx), 720–765°C, (4) Opx-clinopyroxene (cpx), 860–915°C, (5) Fe olivine-opx-cpx, one sample with temperature of 900°C. Plagioclase and orthopyroxene phenocryst compositions typically exhibit a range of composition up to ~20 mol.%. Calculated average phenocryst equilibration pressures (P total) range between 0.5–4.9 kb, and average 2.2 kb (~7–8 km depth), indicating upper crustal crystallization. These calculations are very sensitive to variations in phenocryst composition. Calculated \(/_{{\text{H}}_2 {\text{O}}} \) for the amphibole and biotite-bearing rhyolites indicate phenocryst equilibration under \(P_{{\text{H}}_2 {\text{O}}} \simeq P_{{\text{total}}} \) , with \(X_{{\text{H}}_2 {\text{O}}} \) ~0.17–0.24 (5–8 wt. %). The precipitation of cummingtonite is thus temperature dependent, the upper limit being close to 760°C. Eruptive mechanisms of the lavas, pumices, and ash-flow deposits are evidently not primarily controlled by temperature, P total, \(P_{{\text{H}}_2 {\text{O}}} \) , or crystal content of the magmas, and explanations must lie in kinetic and fluid dynamic behavior of the magmas. For the Taupo rhyolites, it is suggested that the critical size of a magma body (i.e. Rayleigh number) is a controlling factor in that it will influence the convective regime; fully turbulent convection is deduced to have occurred within the larger magma bodies. One consequence is intense vesiculation, prior to eruption, within the uppermost zones of these magma chambers, and the voluminous pumice deposits are believed to emanate from such chambers. Oscillatory compositional zoning within pyroxene phenocrysts is consistent with magma convection.  相似文献   

2.
Mine flooding is a serious problem in the Enugu Coal Mines and has led to the abandonment of two of the four mines. About 1800 m3 of water is pumped out daily from the mines into the nearby streams. The source of this enormous volume of water has been established based on the hydrodynamics and hydrology of the area. It is shown that although two prolific aquifers—an unconfined and a confined system—overlie the mines, the mine water is derived principally from the unconfined aquifer. The pathway of flow is, however, provided by the numerous fractures connecting the two aquifers and the mine tunnel.The major hydrochemical activity resulting in pollution of the mine water occurs within the sumps in the floor of the longwalls. These sumps act as oxidation chambers where groundwater from the fractures is mixed and subsequently reacted with sulfur-rich solutes released by coal mining.Contrary to general belief, the mine drainage has not seriously degraded the chemistry of receiving streams. The pH, electric conductivity and, thus, the dissolved ions were increased less than 10% of the values in the unaffected region.  相似文献   

3.
Copper isotope fractionation in acid mine drainage   总被引:4,自引:0,他引:4  
We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The δ65Cu values (based on 65Cu/63Cu) of enargite (δ65Cu = −0.01 ± 0.10‰; 2σ) and chalcopyrite (δ65Cu = 0.16 ± 0.10‰) are within the range of reported values for terrestrial primary Cu sulfides (−1‰ < δ65Cu < 1‰). These mineral samples show lower δ65Cu values than stream waters (1.38‰ ? δ65Cu ? 1.69‰). The average isotopic fractionation (Δaq-min = δ65Cuaq − δ65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ± 0.14‰ and 1.60 ± 0.14‰ for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ± 0.14‰) and enargite (0.98 ± 0.14‰) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (Δaq-mino=-0.57±0.14, where mino refers to the starting mineral) and no apparent fractionation for enargite (Δaq-mino=0.14±0.14). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of δ65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures resulting from Cu sulfide dissolution should be useful for acid mine drainage remediation and ore prospecting purposes.  相似文献   

4.
Surface tension of sedimentary fulvic acid (FA) and humic acid (HA) with molecular weight from < 10,000 to > 300,000 was measured at 5°C and 25°C, over a wide range of concentrations (0.114-107.4 g/l) at pH 8. HA was in the form of sodium humate. Surface tension decreases with an increase in HA and FA concentration and both HA and FA were found to be surface active materials with FA exhibiting the lowest surface tension (31 dynes/cm).Plots of surface tension vs. log concentration gave two straight lines with a break at a certain concentration similar to surfactants. From the concentration at the break point, aggregation concentration (AGC) was determined. For HA with molecular weight above 10,000, the AGC decreased with an increase in molecular weight. The more hydrophobic the HA, the greater was the tendency to form aggregates. Surface excess (surface concentration) was determined (2.3 × 10?10?5.5 × 10?10mol/cn2) from the slope of the plot of surface tension vs. log concentration for concentrations lower than the AGC. Adsorption of HA into the surface layer increased with increasing molecular weight of HA.  相似文献   

5.
Fluorescence and absorption spectra of sedimentary humic acid (HA) and fulvic acid (FA), with molecular weights ranging from < 10,000 to >300,000, were measured at 20°C and pH 8. The maximum excitation and emission wavelengths of HA were longer than those of FA, being independent of molecular weight. The excitation and emission maxima can be utilized to differentiate between sedimentary HA and FA. It is suggested that the fluorophors in HA are of a higher molecular weight aromatic groups than those in FA.Smaller molecules were found to have a greater fluorescence than larger ones for sedimentary humic substances and this phenomenon is similar to those obtained for humic substances of terrestrial origin. The absorption coefficient (1/g/cm) of HA decreased, while that of FA increased with the increase in molecular weight. It was shown that fluorescence intensity per weight concentration unit of HA increases and that of FA decreases with increasing absorption coefficient.  相似文献   

6.
Volatile fatty acid (VFA) apparent turnover rates were determined by measuring whole sediment VFA concentrations and the corresponding reaction rate constants. The following ranges of VFA concentrations were measured in Cape Lookout Bight, N.C. sediments (μmole·ls?1): acetate 54–660, propionate 1–24, butyrate <0.5–22, iso-butyrate <0.5–6. Apparent turnover rates measured over a one-year period ranged from 18–600 μmole·ls?1·h?1 for acetate and 0.7–7 μmole·ls?1·h?1 for the carboxyl carbon of propionate. Methane production was observed only with acetate and only in sulfatedepleted sediments; total acetate turnover attained approximately the same maximum value in both sulfate-reducing and sulfate-depleted sediments.Apparent turnover rates for acetate and propionate appeared to be controlled by similar factors: in sulfate-reducing (surface) sediments the turnover rates were stimulated by autumn storm-mediated deposition/resuspension events; in deeper sulfate-depleted sediments the turnover rates followed changes in the ambient temperature. Changes in VFA poolsizes were proportionally much larger than changes in corresponding rate constants. The ratio of CO2 to CH4 produced from acetate vs. depth suggested that non-methanogenic bacteria accounted for 60% of the acetate turnover in sulfate-depleted sediments.VFA concentrations were much lower in N.C. continental slope mud than in Cape Lookout sediments; acetate was the only VFA detectable throughout the top 40 cm of the slope sediments. The estimated production rate of CO2 from acetate decreased rapidly with depth. The surface rate was approximately 20 times less than that measured at similar temperatures in sulfate-reducing Cape Lookout sediments.  相似文献   

7.
Rhyolitic glass occurs as an interstitial phase in Tertiary basaltic dikes from northwestern Iceland forming up to 8% of the mode. Chlorophaeite occurs as globules within the glass as well as in interstitial vugs and vesicles. The existence and textural relations of these iron-rich globules in a silica-rich glass is suggestive of liquid immiscibility such as observed in synthetic systems. Trace element data on these naturally occurring phases is, however, inconsistent with experimentally determined partition coefficients for, for example, Ti, P, and Zr in immiscible liquids indicating that the chlorophaeite does not represent an immiscible phase and is more likely an alteration product. The similarity of the interstitial acid glasses to Iceland rhyolites is suggestive evidence of an origin for at least some Icelandic rhyolites by shallow-level fractional crystallization of basaltic magmas.  相似文献   

8.
Humic acid was titrated by sodium methoxide in dimethylsulfoxide using platinum-calomel electrode systems. Adding benzoic acid and phenol as internal standards to humic acid yielded two inflections. The titer at the first inflection point was equivalent to the carboxyl groups whose pKa (H2O) values were less than 7. The difference between the titers at the two inflection points was equivalent to the phenolic hydroxyl groups whose pKa (H2O) values were 7–10. Calculated results for the carboxyl and phenolic hydroxyl groups in humic acid obtained by the nonaqueous titration method agreed closely with those obtained by conventional methods.  相似文献   

9.
针对自然降尘进行的物相、成分分析表明该降尘的物相组成非常复杂,以石英、方解石、钠长石、白云石、云母为主要物相成分。为探讨降尘中矿物在有机酸中的溶解情况,进一步揭示其对人体的危害程度。本文以西宁降尘为研究对象,并选择柠檬酸为代表有机酸,分别用XRD、FTIR及ICP-AES等方法对柠檬酸处理前后降尘的残余固体及反应上清液进行分析。结果表明,降尘中方解石在经柠檬酸作用10 min后完全溶解,白云石在16 h内基本溶解完全,根据红外分析结果,Si—O、Al—O结构未发生明显破坏。然而,溶出元素结果显示,Al、Si的溶出量随着溶解时间的增长而缓慢增加,说明柠檬酸对Si—O四面体及Al—O八面体也造成了一定的破坏作用。通过分析降尘中3种难溶矿物在相同条件下的溶解速率可以得出,在整个溶解过程中,钠长石的溶解速率高于绢云母,而石英的溶解速率在不同的溶解时间有着较大的差异。根据3种纯矿的溶解速率推断三者的溶解顺序,钠长石明显先于云母溶解,石英的溶解先后顺序还有待进一步研究。通过降尘及纯矿在柠檬酸中溶解过程中不同时刻的元素溶出比例及矿物溶出速率可以得出除石英外4种主要矿物的溶解顺序为:方解石,白云石,钠长石,绢云母。  相似文献   

10.
11.
Probertite (NaCaB5O9·5H2O) and ulexite (NaCaB5O9·8H2O) posses identical chemical formula except for their water content. In this study, the dissolution of probertite in boric acid solution was investigated as a function of temperature and time. As the boric acid concentration increased, the dissolution of probertite also increased. However, the boric acid concentrations above 5 wt.% at 60 °C and 80 °C did not significantly affect the dissolution of probertite. The stirring speed had almost no effect on the dissolution of probertite. The dissolution kinetics of probertite in boric acid solution was controlled by first order pseudo homogeneous reaction. The activation energies for different probertite particle sizes varied from 25.25 kJ/mol K to 28.25 kJ/mol K, indicating that particle size had minor effect on the dissolution of probertite.  相似文献   

12.
温度对水中碳酸平衡的影响浅析   总被引:3,自引:0,他引:3  
本文通过理论分析和计算探讨了0~100℃范围内不同温度下的碳酸平衡问题,分析了H2CO3*、HCO3-和CO32-三种碳酸在不同温度和pH条件下的水中所占比例及分布规律。认为0~100℃范围内pH0在8.60~8.22之间变化,变化范围较小;三种碳酸在不同温度下随pH变化过程中所占比例存在差异,但差异也不大;在0~100℃范围内不管温度高低,均表现出酸性水中H2CO3*占优势,碱性水中CO32-占优势,偏酸、偏碱及中性水中HCO3-占优势;在较低pH下由于水中CO32-含量很少,因此用常规方法一般是难以检测到的。   相似文献   

13.
Humic acid protein complexation   总被引:1,自引:0,他引:1  
Interactions of purified Aldrich humic acid (PAHA) with lysozyme (LSZ) are investigated. In solution LSZ is moderately positively and PAHA negatively charged at the investigated pH values. The proton binding of PAHA and of LSZ is determined by potentiometric proton titrations at various KCl concentrations. It is also measured for two mixtures of PAHA-LSZ and compared with theoretically calculated proton binding assuming no mutual interaction. The charge adaptation due to PAHA-LSZ interaction is relatively small and only significant at low and high pH. Next to the proton binding, the mass ratio PAHA/LSZ at the iso-electric point (IEP) of the complex at given solution conditions is measured together with the pH using the Mütek particle charge detector. From the pH changes the charge adaptation due to the interaction can be found. Also these measurements show that the net charge adaptation is weak for PAHA-LSZ complexes at their IEP. PAHA/LSZ mass ratios in the complexes at the IEP are measured at pH 5 and 7. At pH 5 and 50 mmol/L KCl the charge of the complex is compensated for 30-40% by K+; at pH 7, where LSZ has a rather low positive charge, this is 45-55%. At pH 5 and 5 mmol/L KCl the PAHA/LSZ mass ratio at the IEP of the complex depends on the order of addition. When LSZ is added to PAHA about 25% K+ is included in the complex, but no K+ is incorporated when PAHA is added to LSZ. The flocculation behavior of the complexes is also different. After LSZ addition to PAHA slow precipitation occurs (6-24 h) in the IEP, but after addition of PAHA to LSZ no precipitation can be seen after 12 h. Clearly, PAHA/LSZ complexation and the colloidal stability of PAHA-LSZ aggregates depend on the order of addition. Some implications of the observed behavior are discussed.  相似文献   

14.
This study identifies isotope signatures associated with autotrophic and heterotrophic microbial communities that may provide a means to determine carbon cycling relationships in situ for acid mine drainage (AMD) sites. Stable carbon isotope ratios (δ13C) of carbon sources, bulk cells, and membrane phospholipids (PLFA) were measured for autotrophic and heterotrophic microbial enrichment cultures from a mine tailings impoundment in northern Ontario, Canada, and for pure strains of the sulfur oxidizing bacteria Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The autotrophic enrichments had indistinguishable PLFA distributions from the pure cultures, and the PLFA cyc-C19:0 was determined to be a unique biomarker in this system for these sulfur oxidizing bacteria. The PLFA distributions produced by the heterotrophic enrichments were distinct from the autotrophic distributions and the C18:2 PLFA was identified as a biomarker for these heterotrophic enrichments. Genetic analysis (16S, 18S rRNA) of the heterotrophic cultures indicated that these communities were primarily composed of Acremonium fungi.Stable carbon isotope analysis revealed that bulk cellular material in all autotrophic cultures was depleted in δ13C by 5.6–10.9‰ relative to their atmospheric CO2 derived carbon source, suggesting that inorganic carbon fixation in these cultures is carbon limited. Individual PLFA from these autotrophs were further depleted by 8.2–14.6‰ compared to the bulk cell δ13C, which are among the largest biosynthetic isotope fractionation factors between bulk cell and PLFA reported in the literature. In contrast, the heterotrophic bulk cells were not significantly fractionated in δ13C relative to their carbon source and heterotrophic PLFA ranged from 3‰ enriched to 4‰ depleted relative to the isotopic composition of their total biomass. These distinct PLFA biomarkers and isotopic fractionations associated with autotrophic and heterotrophic activity in this laboratory study provide potential biomarkers for delineating autotrophic and heterotrophic carbon cycling in AMD environments.  相似文献   

15.
Phosphonoformic acid, oxalic acid, glyoxylic acid, and 10 additional organic compounds that are structurally related to them have been reacted with synthetic MnO2 (birnessite), consisting of 22% MnIII and 78% MnIV, and synthetic MnOOH (manganite), consisting solely of MnIII. Significant concentrations of dissolved MnIII were detected in reactions of phosphonoformic acid with MnOOH, indicating that ligand-assisted dissolution took place. Reaction of phosphonoformic acid with MnO2, and reaction of all other organic reactants with either MnOOH or MnO2, yielded only MnII, indicating that reductive dissolution was predominant. As far as reductive dissolution reactions are concerned, MnO2 yields a range of reactivity that is nearly 20-times greater than that of MnOOH. Oxidation converts phosphonoformic acid into orthophosphate ion, glyoxylic acid into formic acid, pyruvic acid into acetic acid, and 2,3-butanedione into acetic acid. When differences in surface area loading are accounted for, oxalic acid, pyruvic acid, and 2,3-butanedione yield virtually the same dissolution rates for the two (hydr)oxides. At pH 5.0, glyoxylic acid reacts 14-times faster with MnO2 than with MnOOH. MnO2 reacts more slowly than MnOOH by a factor of 1/16th with oxamic acid, 1/20th with lactic acid, and 1/33rd with dimethyl oxalate. Adsorptive, complexant, and reductant properties of the 13 organic reactants are believed responsible for the observed reactivity differences.  相似文献   

16.
The adsorption of 15 protein amino acids from dilute (~ 10 μM) distilled water solutions onto organic-free kaolinite and montmorillonite clay minerals (1 wt% suspensions) was determined at room temperature over a 48 hour period. The systems came to steady state within 2 hours. Basic (positively charged) amino acids were strongly adsorbed (40–80% removal) by both clay minerals. Neutral (uncharged) amino acids were taken up appreciably (10–15%) by montmorillonite, but little if any (<5%) by kaolinite. Acidic (negatively charged) amino acids were adsorbed (20–35%) only by kaolinite. These adsorption patterns appear to be related in part to electrostatic interactions between the clay mineral surfaces and the different amino acid types. The measured extents and selectivities of adsorption onto these clay minerals are sufficiently great to potentially affect the distributions and reactions of free amino acids in natural environments.  相似文献   

17.
Total nitrogen, measured by neutron activation analysis, is highly enriched in residues from iron meteorites obtained by dissolution of the metal in dilute H2SO4, relative to the bulk value. On the average, the residues, representing 3% mass, contain 22% of total N. Group IA has more dissolved N than IIIA. Lithium and Ir show a distribution pattern parallel to N. Total Xe has been measured in several residues and its isotopic composition is, similar to atmospheric Xe for mass numbers 131 to 136 but not for 124Xe and 126Xe which are strongly depleted in the non-magnetic residues. It is suggested that iron meteorites have trapped in their micro-inclusions, some pre-solar nebular matter which is isotopically heterogeneous.  相似文献   

18.
Dissolution of magnesite in acetic acid solutions was investigated. The influence of various parameters such as reaction temperature, particle size and acid concentration was studied in order to elucidate the kinetics of magnesium carbonate. The leaching rate increased with decreasing particle size and with increasing temperature. Initially, the dissolution in terms of acid concentration increased until a definite concentration and then fell with increasing concentration. A kinetic model was researched to describe the dissolution and to analyse the kinetic data, basically. Dissolution curves were evaluated in order to test shrinking core models for fluid–solid systems. Consequently, it was determined that the dissolution of natural magnesite was controlled by chemical reaction, i.e., 1−(1−x)1/3=kt. The apparent activation energy of leaching process was found as 78.40 kJ mol−1.  相似文献   

19.
In this study, the dissolution of magnesite particles in aqueous lactic acid solutions was investigated in a batch reactor employing the parameters of stirring speed, particle size, temperature and acid concentration. The shrinking core model was evaluated to determine the effect of particle size, temperature and concentration. It was also found that the stirring speed did not change the dissolution. Consequently, it was determined that the dissolution rate is controlled by surface chemical reaction. The activation energy of the process was determined to be 50.3 kJ mol− 1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号