首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
依据Stoke定律将长江小于63 μm的沉积物分成4个粒级.将黄河小于63 μm的沉积物分成6个粒级.采用ICP-MS法分别测试了分粒级沉积物的REE含量,结果显示:相同粒级中长江沉积物的∑REE均高于黄河沉积物.长江沉积物REE的丰度遵循元素的“粒度控制律”,即随粒度变细∑REE含量依次增高;黄河沉积物∑REE呈“高-低-高”的不对称马鞍型分布;北美页岩标准化分布曲线均呈右倾状,轻重稀土分馏明显,相对富集LREE,具弱Ce亏损,明显的Eu正异常.长江与黄河沉积物REE组成特征差异与两条河流流域的风化作用及沉积物的矿物组成密切相关,黄河∑REE的马鞍型分布是细粒级中黏土矿物吸附及粗粒级中相对高含量的重矿物富集作用的结果,而长江沉积物随粒级增大∑REE的衰减趋势主要是随粒级增大逐步增加的石英和长石含量的稀释作用所造成.  相似文献   

2.
Small rivers (≤ 100 km length) are likely to drain fewer rock types. Therefore, their solutes and sediments are good indicators of weathering environments typical of their basins and help constraining the nature of their source rocks. To understand this, the texture, mineralogy, major and trace element compositions of the sediments deposited by the River Hemavati, a northern upland tributary of the Cauvery River in southern India, are analyzed and discussed.

The Hemavati sediments are overall of fine sand size (mean 2–3), and have high concentrations of FeO (≤ 7 wt.%), TiO2 (≤ 1.2 wt.%), Cr (≤ 350 ppm) and Ni (≤ 125 ppm). Major and trace element distribution call for a binary source for the sediments, and particularly point to contrasting climatic conditions of their provenances. The source areas in the upstream and downstream parts are exposed to sub-humid high relief and sub-arid low relief conditions, respectively, with distinct weathering characteristics. The CIA values (85–48) decrease from near the source to downstream, suggesting that the downstream rain-shadow part of the catchment suffered only minor chemical weathering.

On the other hand, the REE distribution in the Hemavati sediments indicates contrasting lithologies in their provenance, and is not controlled by chemical weathering. On the basis of REE patterns, the sediments are divided into two compositional groups. The Type 1 sediments have a REE chemistry similar to the upper continental crust, and have been derived from the > 3.2 Ga composite peninsular gneisses occurring in the low-lying, semi-arid Mysore Plateau. The Type 2 sediments, however, have dominantly intermediate to mafic granulite contributions from the tectonically uplifted Western Ghats, weathered under sub-humid conditions. High concentrations of FeO, TiO2, Cr and Ni in the sediments suggest mafic-dominated source lithologies in the upper catchment, a feature also confirmed by field observations and petrographic study.  相似文献   


3.
为了探讨渤海东部和黄海北部稀土元素分布特征及其影响因素,对渤海东部和黄海北部138个表层沉积物样品进行电感耦合等离子体质谱法分析.结果表明:渤海东部和黄海北部沉积物的配分模式与中国黄土的接近,与周边的鸭绿江、黄河等河流输入物质也有相似性,表明研究区沉积物主要来自于周边大陆.沉积物物源判别结果显示:山东半岛近岸及其西南部沉积物主要来源于黄河,该区域沉积物分布受山东半岛沿岸流及近岸潮流影响;研究区东部沉积物稀土元素组成特征与鸭绿江沉积物组成相近,表明研究区东部沉积物可能由鸭绿江供应;研究区西北部沉积物主要来源于黄河及辽宁沿岸物质输入,局部有滦河、六股河物质存在;研究区东南部物质主要来源于黄河.对沉积物稀土元素百分含量及参数特征值进行了Q型聚类分析,将研究海域沉积物划分为4个不同的区域,分别为北黄海东部区域(Ⅰ)、山东半岛近岸周边区域(Ⅱ)、渤海东部中部区域(Ⅲ)及研究区的西北部与东南部分布区(Ⅳ).   相似文献   

4.
Porewater (i.e., groundwater) samples were collected from multi-level piezometers across the freshwater-saltwater seepage face within the Indian River Lagoon subterranean estuary along Florida’s (USA) Atlantic coast for analysis of the rare earth elements (REE). Surface water samples for REE analysis were also collected from the water column of the Indian River Lagoon as well as two local rivers (Eau Gallie River, Crane Creek) that flow into the lagoon within the study area. Concentrations of REEs in porewaters from the subterranean estuary are 10-100 times higher than typical seawater values (e.g., Nd ranges from 217 to 2409 pmol kg−1), with submarine groundwater discharge (SGD) at the freshwater-saltwater seepage face exhibiting the highest REE concentrations. The elevated REE concentrations for SGD at the seepage face are too high to be the result of simple, binary mixing between a seawater end-member and local terrestrial SGD. Instead, the high REE concentrations indicate that geochemical reactions occurring within the subterranean estuary contribute substantially to the REE cycle. A simple mass balance model is used to investigate the cycling of REEs in the Indian River Lagoon and its underlying subterranean estuary. Mass balance modeling reveals that the Indian River Lagoon is approximately at steady-state with respect to the REE fluxes into and out of the lagoon. However, the subterranean estuary is not at steady-state with respect to the REE fluxes. Specifically, the model suggests that the SGD Nd flux, for example, exported from the subterranean estuary to the overlying lagoon waters exceeds the combined input to the subterranean estuary from terrestrial SGD and recirculating marine SGD by, on average, ∼100 mmol day−1. The mass balance model also reveals that the subterranean estuary is a net source of light REEs (LREE) and middle REEs (MREE) to the overlying lagoon waters, but acts as a sink for the heavy REEs (HREE). Geochemical modeling and statistical analysis further suggests that this fractionation occurs, in part, due to the coupling between REE cycling and iron redox cycling within the Indian River Lagoon subterranean estuary. The net SGD flux of Nd to the Indian River Lagoon is ∼7-fold larger than the local effective river flux to these coastal waters. This previously unrecognized source of Nd to the coastal ocean could conceivably be important to the global oceanic Nd budget, and help to resolve the oceanic “Nd paradox” by accounting for a substantial fraction of the hypothesized missing Nd flux to the ocean.  相似文献   

5.
 Heavy metal and metalloid concentrations within stream-estuary sediments (<180-μm size fraction) in north-eastern New South Wales largely represent natural background values. However, element concentrations (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn) of Hunter River sediments within the heavily industrialized and urbanized Newcastle region exceed upstream background values by up to one order of magnitude. High element concentrations have been found within sediments of the Newcastle Harbour and Throsby Creek which drains into urbanized and light industry areas. Observed Pb enrichments and low 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios are likely caused by atmospheric deposition of Pb additives from petrol and subsequent Pb transport by road run-off waters into the local drainage system. Sediments of the Richmond River and lower Manning, Macleay, Clarence, Brunswick and Tweed River generally display no evidence for anthropogenic heavy metal and metalloid contamination (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn). However, the rivers and their tributaries possess localized sedimentary traps with elevated heavy metal concentrations (Cu, Pb, Zn). Lead isotope data indicate that anthropogenic Pb provides a detectable contribution to investigated sediments. Such contributions are evident at sample sites close to sewage outlets and in the vicinity of the Pacific Highway. In addition, As concentrations of Richmond River sediments gradually increase downstream. This geochemical trend may be the result of As mobilization from numerous cattle-dip sites within the region into the drainage system and subsequent accumulation of As in downstream river and estuary sediments. Received: 5 September 1997 · Accepted: 4 November 1997  相似文献   

6.
对辽东湾东南部海域LDC30孔沉积物稀土元素(REE)、粒度等指标进行了分析,研究了其沉积物中稀土元素组成特征及其控制因素,并对其物质来源进行了探讨。结果表明,LDC30孔沉积物ΣREE平均值为149.49 μg/g,略高于黄海和东海,但是低于渤海和南海,并且低于全球沉积物ΣREE的平均值。研究区沉积物REE配分模式表现为明显的轻稀土富集、重稀土相对亏损;δEu的平均值为0.71,为中度亏损,δCe无异常;轻稀土与重稀土之间的分异作用较强,且轻重稀土内部分异明显。根据沉积物REE垂向变化特征,可将LDC30岩芯以51cm为界划分为两段,上段(0~51 cm)ΣREE含量随着深度的减小而呈增加的趋势,下段(51~99 cm)ΣREE含量在垂向上没有明显的波动变化,并且上段较下段稀土分异明显。δCe整体上比较稳定,但是在上段(0~51 cm)呈现下降的趋势。δEu垂向上也相对稳定的趋势。该孔沉积物REE参数与粒度之间无明显的相关性,REE组成不受粒度的控制,但重矿物对REE的组成和分布状况有重要的影响。LDC30孔沉积物物质来源比较稳定,并且具有强烈的陆源特征,其沉积物主要来源于辽东湾北部河流(大辽河、小凌河、双台子河等),同时辽东湾西部河流滦河可能对LDC30孔上段沉积物有一定贡献。  相似文献   

7.
对南海北部陆坡MD05-2905站9个沉积物样品稀土元素进行分析,结果显示MD05-2905站沉积物中稀土含量总量(ΣREE)变化范围较大,其分布范围为60.66×10-6~350.37×10-6,平均值为174.59×10-6,其中全新世样品的稀土含量总量明显低于末次冰期样品,其球粒陨石分布模式与上地壳基本一致。对比发现,其ΣREE平均值相对接近中国黄土和珠江口,而与深海粘土中稀土元素的丰度相差较大,说明其主体可能来自陆源。稀土元素分馏参数δEu和δCe以及富集因子(EF)和判别函数(DF)揭示南海北部MD05-2905站沉积物与黄土、珠江口和台湾浅滩都有联系,显示了多物源多传输方式的特征。另外发现富集因子(EF)和判别函数(DF)数值在末次冰期时期与全新世时期差别相对较大,末次冰期时期黄土、珠江口和台湾浅滩的DF值都远远小于全新世时期,这可能反映末次冰期时黄土、珠江口和台湾浅滩对南海北部的物源贡献更大,也反映末次冰期与全新世期间各个物源供给/传输方式可能发生变化。  相似文献   

8.
对南海表层沉积物中的细粒组分进行电感耦合等离子体质谱法测试, 探讨南海稀土元素分布特征及其影响因素.结果表明, 南海表层沉积物中稀土元素分布主要与陆源物质输入、生物活动和火山物质补给密切相关.南海细粒组分的配分模式与中国黄土的接近, 与周边的珠江、湄公河等河流输入物质也有相似性, 而与南海碱性玄武岩存在显著差异, 表明南海沉积物主要来自于周边大陆.稀土元素趋势分析表明, 珠江口往外至海南岛南部海域中沉积物朝东南方向向陆坡输送; 台西南至珠江口往外海域沉积物大多向南输运; 吕宋岛西部海域包括黄岩岛附近海域的火山物质主要向西北方向输送, 向西可达113°E、向北可至20°N附近; 南海南部沉积物整体上向南沙海槽西北部附近海域输送.   相似文献   

9.
Analysis of 59 surface sediment samples from the Polish exclusive economic zone (EEZ) shows that Szczecin Lagoon sediments are the most polluted by heavy metals and that the degree of heavy-metal pollution decreases substantially on passing from the Szczecin Lagoon to the Pomeranian Bay and the inner shelf area and then on passing to the Bornholm Deep and Słupsk Furrow. Heavy-metal pollution in the sediments of the western part of the Polish EEZ therefore appears to follow the dispersion of the Oder River. Fluffy material from the Oder estuary appears to be the main source of heavy metals in the muddy sediments of the Bornholm Deep. The formation of sulphides is therefore not the principal factor controlling the enrichment of heavy metals in the sediments of this anoxic basin, although it may be responsible for the uptake of Mo, Sb and As. Two main factors control the distribution of the rare earth elements (REE) in sediments of the Polish EEZ: the input of Fe-organic colloids from rivers and the presence of detrital material in the sediments.  相似文献   

10.
稀土的开发和广泛应用使得人们倍加关注其在环境中的分布及其环境地球化学行为。赣江作为鄱阳湖流域五大入湖河之一,发源于稀土资源富集的赣南地区,而其下游水体及周边地下水中稀土元素的含量和分异特征目前尚不完全清楚。以赣江北支水体及沉积物为研究对象,开展了稀土元素地球化学研究。结果表明,赣江北支水体中稀土元素总量在地表水中为230~1 146 ng/L(均值458.85 ng/L),地下水中为284~1 498 ng/L(均值634.94 ng/L),沉积物中稀土元素总量为177.9~270.7 mg/kg(均值226.99 mg/kg)。PHREEQC模拟计算表明,水体中的稀土元素主要以碳酸根络合物(REEC03+)的形式存在。地表水和地下水总体上均表现为重稀土元素相较于轻、中稀土元素富集,沉积物未表现出明显的富集特性;水体具有Ce、Eu负异常特点,而沉积物表现为Ce正异常和Eu负异常,指示氧化还原环境和水岩相互作用对稀土元素在水-沉积物系统中迁移转化的影响。地下水中稀土元素的含量沿流向具有上升趋势,而水体中重稀土元素的富集程度不断减弱,同时碳酸根络合物(REEC03+)的占比不断降低,反映水体中稀土元素的含量受到pH、胶体吸附、络合作用以及地下水-地表水相互作用的影响。水体中重稀土元素的富集受到碳酸根络合反应的影响,Ce、Eu负异常与Ce氧化沉淀和母岩特性相关。Gd异常值表明,研究区中下游水体中的Gd元素受到人为输入的影响。  相似文献   

11.
元素地球化学是沉积物源判别和环境研究的重要手段,但河口海岸地区沉积动力环境复杂多变,人类活动影响强烈,全岩沉积地球化学的示踪研究存在局限性和多解性。选择长江下游干流悬浮物、东海陆架表层沉积物以及长江口具有一百多年沉积记录的ZK6孔,通过化学相态分析(1 N HCl处理),探究酸溶态微量元素组成特征及其对河口环境变迁的指示。相较于钻孔全岩样品,酸溶态Sr/Ba比能更可靠地反映河口古盐度和海陆相沉积环境的变化。ZK6孔沉积物酸溶态稀土元素(REE)主要赋存于Mn氧化物中,Mn、ΣREE含量、Ce/Ce*以及Sr/Ba比在1899—2007年间呈三段式变化,主要反映长江河口流路分汊和主泓位置改变引起的河口沉积环境变化,进而影响河口环境中活跃元素和次生组分在沉积地层中的保存记录。该研究对今后深化认识复杂河口环境下微量元素地球化学行为以及微量元素示踪海洋环境变化具有借鉴意义。  相似文献   

12.
Dongping Lake area, located in the lower reaches of Yellow River, is an ideal place to study the changes of modern river and lake sedimentary environment. The sediment samples of Dawen River, Yellow River, and Dongping Lake were collected, and the major elements, trace elements and organic matter geochemical composition of the samples were analyzed. Cluster analysis, characteristic element ratio method and graphic method were used to explore the geochemical characteristics of sediments and their environmental implication. The results show that the contents of SiO_2, Na_2O, TiO_2 and Zr in sediments of Dawen River and Yellow River are relatively high, and the contents of iron and manganese oxides, organic matter, CaO, P_2O_5 and Sr in lake sediments are relatively high. That reveals the differences of sedimentary environments between the rivers and the lake. The contents of Sr and Zr in Dawen River are affected by the rapid migration of clastic materials in the upstream carbonate source area during the flood season; the δCe,ΣREE and REE's ratios in the sediments of the Yellow River reflect the influence of the Loess source; and the distribution of elements changes along the flow direction during the flood season. The characteristics of p H, element composition and LREE HREE fractionation of the lake sediments indicate that the sediment source is complex, and the lake environment is affected by the flood season. The study shows that the geochemical content and its variation characteristics of sediments effectively reveal the sedimentary environment, material composition and characteristics of flood season of rivers and the lake in the study area.  相似文献   

13.
Thirty-eight sediment samples from 15 primary rivers on Taiwan were retrieved to characterize the rare earth element (REE) signature of fluvial fine sediment sources. Compared to the three large rivers on the Chinese mainland, distinct differences were observed in the REE contents, upper continental crust normalized patterns and fractionation factors of the sediment samples. The average REE concentrations of the Taiwanese river sediments are higher than those of the Changjiang and Huanghe, but lower than the Zhujiang. Light rare earth elements (LREEs) are enriched relative to heavy rare earth elements (HREEs) with ratios from 7.48 to 13.03. We found that the variations in (La/Lu)UCC–(Gd/Lu)UCC and (La/Yb)UCC–(Gd/Yb)UCC are good proxies for tracing the source sediments of Taiwanese and Chinese rivers due to their distinguishable values. Our analyses indicate that the REE compositions of Taiwanese river sediments were primarily determined by the properties of the bedrock, and the intensity of chemical weathering in the drainage areas. The relatively high relief and heavy rainfall also have caused the REEs in the fluvial sediments from Taiwan to be transported to the estuaries down rivers from the mountains, and in turn delivered nearly coincidently to the adjacent seas by currents and waves. Our studies suggest that the REE patterns of the river sediments from Taiwan are distinguishable from those from the other sources of sediments transported into the adjacent seas, and therefore are useful proxies for tracing the provenances and dispersal patterns of sediments, as well as paleoenvironmental changes in the marginal seas.  相似文献   

14.
The Tinto and Odiel are small rivers draining one of the largest sulphide deposits in the world. As a result of these deposits and a large industrial complex, the adjacent marine area receives a high amount of metal input. Mercury distribution in the Tinto-Odiel estuary, the Huelva Ría and the Gulf of Cádiz was assessed in water and suspended particulatematter (SPM) and sediments. In the rivers and estuaries, dissolved (HgD)and particulate (HgP) mercury showed wide variations (13 to 200 pM and0.3 to 330 nmol g-1 respectively) depending on the presence or notof sulphidic waters, phosphogypsum deposits, detrital pyrite and oxyhydroxides.In the Ría, concentrations were lower than 10 pM and 4.5 nmol g-1 for HgD and HgP respectively. In surface waters of the Gulf of Cádiz, the average HgD concentration (pm standard deviation) was 2.9 pm 0.9 pM, which is similar to that of North Atlantic Central Waters. The surface sediments collected in the rivers, the Ría and the Gulf showed systematically enriched mercury compared to pre-industrial levels. Vertical mercury profiles in dated sediment cores were typical of anthropogenically influenced environments starting in the early Roman age. These distribution features suggest that most of the Hg discharged by the Huelva Ría is trapped in the sediments of the Gulf of Cádiz.  相似文献   

15.
This paper reports the results of chemical study of bottom sediments of the Zeya and Selemdzha rivers, the largest water streams of the Amur River basin. It was established that the bottom sediments are depleted in practically all analyzed major and trace elements as compared to the upper continental crust (UCC) and Post-Archean Australian Shale (PAAS). It is shown that the bottom sediments of the studied rivers are chemically close to those of the Northeastern China rivers, which is related to the similar geographical and climatic environments. Examination of major-component proportions and trace-element variations suggests that the bottom sediments of the middle reaches of the Zeya River were formed from chemically reworked sources. In contrast, the bottom sediments of the lower reaches of the Zeya and Selemdzha rivers are dominated by physically reworked rather than chemically reworked materials. It is suggested that the bottom sediments of the Zeya River downstream the mouth of the Selemdzha River were formed from material, which was supplied by the Selemdzha River and determined the main geochemical characteristics of the bottom sediments of the lower reaches of the Zeya River. This is presumably related to the fact that the upper reaches of the Selemdzha River is located mainly within the Mongol–Okhotsk fold belt, the complexes of which experienced intense tectonic shearing and brecciation. For this reason, the bottom sediments of the Selemdzha River are mainly dominated by physically reworked rather than by chemically reworked material.  相似文献   

16.
The concentrations of dissolved and suspended particulate rare-earth elements (REE) are reported in acid-sulphate waters from the Odiel and Tinto rivers. Shale normalized patterns are typically convex and high REE concentrations (e.g., Ce=0.43–65 μg.l−1) are present in the waters. The REE content of the suspended load is greater by a factor of up to 3000. In the Odiel river, REE patterns of the particulates are essentially convex and sub-parallel to those of the waters; speciation calculations indicate that SO4 complexes play a dominant role in controlling the REE distributions. In the Tinto river, the REE patterns of the suspended load are slightly fractionated and a negative Ce anomaly is apparent in several samples, reflecting the local influence of phosphogypsum deposits.Contrasting with normal estuaries, REE are not intensely removed in the low chlorinity zone. A remobilization in relation to Fe reduction is observed in the Tinto river.  相似文献   

17.
《Applied Geochemistry》2000,15(5):567-581
The Pearl River estuary is created by the inflow of freshwater from the largest river system that drains into the South China Sea. In recent years, massive economic growth and development in the region has led to excessive release of waste into the environment. The accumulation of contaminants in sediments is likely to pose serious environmental problems in surrounding areas. The study of sediment profiles can provide much information on the metal contamination history and long term potential environmental impacts. In this project, 21 core samples (up to 3.65 m deep) were collected in the Pearl River estuary. About 15 subsamples from each core were analysed for moisture content, total organic matter (L.O.I.), particle size and heavy metal and major element concentrations. The results show that Pb and Zn contents are elevated in the sediments at most of the sampling sites. Compared with historical monitoring results, the sediment metal contents have increased over the last 20 a, particularly for Pb. The west side of the Pearl River estuary tends to be more contaminated than the east side due to the contaminants inputs from the major tributaries and different sedimentation conditions. There are close associations between Fe, Co, Ni and Cu concentrations in the sediments. Zinc and Pb contents in the sediment profiles reflect a combination of the natural geochemical background, anthropogenic influences and the mixing effects within the estuary. The distribution of Pb in the sediments shows strong influences of atmospheric inputs, probably from the coal burning activities in the region.  相似文献   

18.
盛茂刚  崔峻岭  时青  李磊  耿尧 《水文》2014,34(3):92-96
通过对青岛市环胶州湾各河流上的水文站历年含沙量、输沙量资料分析计算,推求出各河流的入海输沙量,并对输沙特征进行分析评价,最后得出以下以下结论:(1)从空间分布来看,胶州湾河流输沙主要来自胶州湾西北部和东北部。(2)河流属中沙河流。河道上游多年平均含沙量和输沙模数均大于河道中下游。(3)输沙量年际变化较大,最大年输沙量是最小年输沙量的518.7倍,且年降水量较大时,年入海水量也较大,年输沙量也较大。(4)河流悬移质颗粒特征为河流从源头到河口,泥沙粒径是不断减小。  相似文献   

19.
依据Stokes颗粒沉降原理将黄河利津水文站和汊河清八站的表层沉积物分别提取为<2μm,2~4μm,4~8μm,8~16μm,16~32μm和32~63μm的6个粒级,采用ICP-MS法对各个粒级沉积物的15个稀土元素进行测试。结果表明:黄河沉积物两个样品REE含量随粒度增大的变化趋势有细微差别,但总体随粒度大小呈"高—低—高"的不对称马鞍型分布,其中最高REE含量和最低REE含量分别位于<4μm的粘土粒级和4~16μm细粉砂粒级中; 各粒级沉积物经北美页岩标准化后,REE的配分模式一致,呈平缓的右倾型,相对富集轻稀土,明显的Eu正异常和Ce负异常。对各个粒级样品进行X射线衍射分析及体视镜下观测,石英含量随粒级增大而增加, 长石在8~16μm中含量最高,在16~32μm中,碳酸岩含量最高,随着粒级增大,重矿物含量逐渐增加,黄河沉积物REE随粒度的变化特征与粘土矿物对其吸附及流域碎屑沉积物不同粒级的矿物成分密切相关。  相似文献   

20.
A systematic study of the granulometric properties and the occurrence and distribution of rare earth elements (REE) within surface sediments from ten bays situated along the coast of Southeast China has facilitated a more rigorous understanding of constraints on sediment provenance in the area. The results show that REE concentrations are similar within a single bay, but vary considerably (133.58–251.77 mg/kg) among the bays. The chondrite-normalized distribution patterns show the typical enrichment of light REEs (LREEs: La–Eu) relative to heavy REEs (HREEs: Gd–Lu), and an apparent depletion of Eu, which is diagnostic of a terrigenous sediment source. Obvious enrichments of the middle REEs (MREEs: Sm–Ho) in the PAAS-normalized (Post-Archean Australian Shale) distribution patterns of these bay sediments are similar to results reported from large rivers in China. Comparing the REE composition of the bay sediments with those of adjoining fluvial sediments and with the bedrock of the surrounding drainage basins, the latter are indicated as the dominant sediment source. The uniform REE distribution patterns, and MREE enrichments, prove that the sediments are derived from the material transported by the streams and rivers that discharge into the bays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号