首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Holocene geological evolution of the Belgian coastal plain is dominated by a transgression of the North Sea, silting up of the coastal plain and human intervention (impoldering). This has led to a typical pattern in groundwater quality which is discussed here for the central part of the coastal plain. Therefore, a database with available groundwater samples is composed. Water type according to the Stuyfzand classification is determined and different hydrosomes and their hydrochemical facies are identified. Based on this, the origin and evolution of the water types is explained using Piper plots and geochemical calculations with PHREEQC. Before the impoldering, salinising and freshening conditions alternated with a general salinisation of the aquifer after about 3400 BP. This results in a dominance of brackish and salt NaCl subtypes which are still found in the deeper part of the aquifer. The subsequent impoldering resulted in an major freshening of the aquifer leading to NaHCO3, MgHCO3 and CaHCO3 subtypes. Overall, mixing, cation exchange, carbonate mineral dissolution and oxidation of organic matter are identified as the major processes determining the general water quality. The close link between geological evolution, water quality and what is still observable today is illustrated with this example of the Belgian coastal plain.  相似文献   

2.
《Applied Geochemistry》2004,19(3):343-358
Ion-exchange batch experiments were run on Cretaceous (Magothy aquifer) clay cores from a nearshore borehole and an inland borehole on Long Island, NY, to determine the origin of high SO42− concentrations in ground water. Desorption batch tests indicate that the amounts of SO42− released from the core samples are much greater (980–4700 μg/g of sediment) than the concentrations in ground-water samples. The locally high SO42− concentrations in pore water extracted from cores are consistent with the overall increase in SO42− concentrations in ground water along Magothy flow paths. Results of the sorption batch tests indicate that SO42− sorption onto clay is small but significant (40–120 μg/g of sediment) in the low-pH (<5) pore water of clays, and a significant part of the SO42− in Magothy pore water may result from the oxidation of FeS2 by dissolved Fe(III). The acidic conditions that result from FeS2 oxidation in acidic pore water should result in greater sorption of SO42− and other anions onto protonated surfaces than in neutral-pH pore water. Comparison of the amounts of Cl released from a clay core sample in desorption batch tests (4 μg/g of sediment) with the amounts of Cl sorbed to the same clay in sorption tests (3.7–5 μg/g) indicates that the high concentrations of Cl in pore water did not originate from connate seawater but were desorbed from sediment that was previously in contact with seawater. Furthermore, a hypothetical seawater transgression in the past is consistent with the observed pattern of sorbed cation complexes in the Magothy cores and could be a significant source of high SO42− concentrations in Magothy ground water.  相似文献   

3.
Urban and industrial development and the expansion of irrigated agriculture have led to a drastic increase in the exploitation of groundwater resources. The over-exploitation of coastal aquifers has caused a seawater intrusion and has seriously degraded groundwater quality. The shallow coastal aquifer of the Djeffara plain, southeastern Tunisia constitutes an example of water resource suffering an intensive and uncontrolled pumping for irrigation. Intensive exploitation of the aquifer and climate aridity caused a decrease in piezometric level and an increase in salinity. According to the hydrochemical data (Cl, SO4 2−, NO3 , HCO3 , Br, Ca2+, Mg2+, Na+, K+) and the stable isotope composition (oxygen-18 and deuterium content), groundwater salinization in the investigated system is caused by three main processes: (i) salts dissolution especially in the central part of Jerba and around Medenine plain; (ii) evaporation process; and (iii) seawater intrusion which caused the increase in salinity in the peninsula of El Jorf, in Jerba and in the North of Ben Gardane.  相似文献   

4.
含水层层状非均质对地下水流系统的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
区域尺度上含水层非均质具有复杂的结构性和随机性,难以准确刻画,造成非均质对区域地下水流系统的影响机制研究不够深入。本文以鄂尔多斯盆地白垩系地下水流系统为研究实例,选择典型剖面,采用剖面二维随机数值模拟方法,通过对比不同非均质刻画方法下地下水流场的变化,探讨含水层层状非均质对地下水流系统的影响机制。结果显示,均质条件下模型各向异性(含水层水平和垂向渗透系数比值Kh/Kv)取值为1000时,地下水流场与实际条件较为接近;非均质条件下,渗透系数方差取值0.91,水平相关长度取值5000 m,Kh/Kv取值150时,接近实际条件。研究表明,在大尺度地下水流模拟研究中,采用水平相关长度、渗透系数方差和各向异性值三个变量生成的随机场能很好地刻画含水层的层状非均质特征及其对水流系统的影响控制作用。由于含水层不同尺度层状非均质的叠加效应,采用均质各向异性介质等效概化含水层层状非均质性会造成等效各向异性值偏大失真的效应。  相似文献   

5.
Monitored natural attenuation can be a viable option for remediation of groundwater contamination by BTEX compounds. Under the field conditions, the rate of contaminant mass attenuation through natural processes, such as biodegradation, to a large extent affected by the groundwater flow regime, which is primarily controlled by the aquifer heterogeneity. Numerical simulation techniques were used to describe quantitatively the relationship between biodegradation rate of BTEX and aquifer heterogeneity. Different levels of aquifer heterogeneity were described by random hydraulic conductivity fields (K) having different statistical parameters, the coefficient of variation (CV) and the correlation length (h). The Turning Bands Algorithm was used to generate such K fields. Visual MODFLOW/RT3D was used to simulate the fate and transport of dissolved BTEX plume within heterogeneous aquifers. The multispecies reactive transport approach described BTEX degradation using multiple terminal electron-accepting processes. First-order biodegradation rate constants were calculated from simulated BTEX plumes in heterogeneous flow fields. The results showed that aquifer heterogeneity significantly affected biodegradation rate; it decreased with increasing CV when h was in the range of up to 12 m, whereas it increased with increasing CV when h was greater than about 12 m. For well characterized aquifers, this finding could be of great value in assessing the effectiveness of natural attenuation during feasibility studies at BTEX contaminated sites.  相似文献   

6.
《Applied Geochemistry》2004,19(9):1471-1482
Ground-water chemistry data from coastal plain environments have been examined to determine the geochemical conditions and processes that occur in these areas and assess their implications for aquifer susceptibility. Two distinct geochemical environments were studied to represent a range of conditions: an inner coastal plain setting having more well-drained soils and lower organic carbon (C) content and an outer coastal plain environment that has more poorly drained soils and high organic C content. Higher concentrations of most major ions and dissolved inorganic and organic C in the outer coastal plain setting indicate a greater degree of mineral dissolution and organic matter oxidation. Accordingly, outer coastal plain waters are more reducing than inner coastal plain waters. Low dissolved oxygen (O2) and nitrate (NO3) concentrations and high iron (Fe) concentrations indicate that ferric iron (Fe (III)) is an important electron acceptor in this setting, while dissolved O2 is the most common terminal electron acceptor in the inner coastal plain setting.The presence of a wide range of redox conditions in the shallow aquifer system examined here underscores the importance of providing a detailed geochemical characterization of ground water when assessing the intrinsic susceptibility of coastal plain settings. The greater prevalence of aerobic conditions in the inner coastal plain setting makes this region more susceptible to contamination by constituents that are more stable under these conditions and is consistent with the significantly (p<0.05) higher concentrations of NO3 found in this setting. Herbicides and their transformation products were frequently detected (36% of wells sampled), however concentrations were typically low (<0.1 μg/L). Shallow water table depths often found in coastal plain settings may result in an increased risk of the detection of pesticides (e.g., alachlor) that degrade rapidly in the unsaturated zone.  相似文献   

7.
The Quaternary coastal plain aquifer down gradient of the Wadi Watir catchment is the main source of potable groundwater in the arid region of south Sinai, Egypt. The scarcity of rainfall over the last decade, combined with high groundwater pumping rates, have resulted in water-quality degradation in the main well field and in wells along the coast. Understanding the sources of groundwater salinization and amount of average annual recharge is critical for developing sustainable groundwater management strategies for the long-term prevention of groundwater quality deterioration. A combination of geochemistry, conservative ions (Cl and Br), and isotopic tracers (87/86Sr, δ81Br, δ37Cl), in conjunction with groundwater modeling, is an effective method to assess and manage groundwater resources in the Wadi Watir delta aquifers. High groundwater salinity, including high Cl and Br concentrations, is recorded inland in the deep drilled wells located in the main well field and in wells along the coast. The range of Cl/Br ratios for shallow and deep groundwaters in the delta (∼50–97) fall between the end member values of the recharge water that comes from the up gradient watershed, and evaporated seawater of marine origin, which is significantly different than the ratio in modern seawater (228). The 87/86Sr and δ81Br isotopic values were higher in the recharge water (0.70,723 < 87/86Sr < 0.70,894, +0.94 < δ81Br < +1.28‰), and lower in the deep groundwater (0.70,698 < 87/86Sr < 0.70,705, +0.22‰ < δ81Br < +0.41‰). The δ37Cl isotopic values were lower in the recharge water (−0.48 < δ37Cl < −0.06‰) and higher in the deep groundwater (−0.01 < δ37Cl < +0.22‰). The isotopic values of strontium, chloride, and bromide in groundwater from the Wadi Watir delta aquifers indicate that the main groundwater recharge source comes from the up gradient catchment along the main stream channel entering the delta. The solute-weighted mass balance mixing models show that groundwater in the main well field contains 4–10% deep saline groundwater, and groundwater in some wells along the coast contain 2–6% seawater and 18–29% deep saline groundwater.A three-dimensional, variable-density, flow-and-transport SEAWAT model was developed using groundwater isotopes (87Sr/86Sr, δ37Cl and δ81Br) and calibrated using historical records of groundwater level and salinity. δ18O was used to normalize the evaporative effect on shallow groundwater salinity for model calibration. The model shows how groundwater salinity and hydrologic data can be used in SEAWAT to understand recharge mechanisms, estimate groundwater recharge rates, and simulate the upwelling of deep saline groundwater and seawater intrusion. The model indicates that most of the groundwater recharge occurs near the outlet of the main channel. Average annual recharge to delta alluvial aquifers for 1982 to 2009 is estimated to be 2.16 × 106 m3/yr. The main factors that control groundwater salinity are overpumping and recharge availability.  相似文献   

8.
With the increased demand for groundwater resulting from fast demographic growth, accelerated urbanization, economic and agricultural activity diversification, and the increase of per capita consumption, ground water resources, in particular in coastal regions, remain relatively low, compared to demand. The groundwater quality and piezometric variations result mainly from intensive exploitation, agricultural activities and the intrusion of seawater. This phenomenon is observed mostly in semi-arid areas, such as the oriental Sahel of Tunisia, where an apparent reduction in rainfall in recent years can be seen. Groundwater becomes overexploited especially as its natural recharge by rainwater does not succeed in maintaining the hydrologic balance. The imbalance between water demand and resources induces the degradation of the water quality. In such a case, the artificial recharge of water-table aquifers by water from dams is a credible alternative to improve the hydrodynamic and physicochemical conditions of the groundwater. Like most coastal aquifers, the Teboulba water-table aquifer is threatened by overexploitation for at least three decades. This threat appears by a considerable piezometric level drop and by water salinisation, due to seawater intrusion. Given this alarming situation, since 1971, artificial recharge through wells with surface water from a dam was tested in order to restore the water levels and to improve water quality. The piezometric and chemical surveys of the Teboulba aquifer permitted one to describe the temporal and spatial piezometric and geochemical conditions of the aquifer and to show the effect of the artificial recharge. Indeed, the artificial recharge undertaken since 1971 made the geochemical and piezometric conditions of the Teboulba aquifer improve. This example is a rare, well-documented case-study of the benefits of artificial recharge in a coastal aquifer, over the long term.  相似文献   

9.
以中国地质调查局资助的<淮河流域环境地质调查>项目为依托,对收集到的区域基础地质和水文地质资料进行了二次开发.并根据近三年来淮河流域环境地质调查项目新取得的水文地质钻孔资料、水化学及同位素样品分析结果,科学地对淮河流域平原区第四系含水层进行了划分和印证,结合项目阶段研究成果,对淮河流域平原区第四系含水层特征进行了初步分析和总结.  相似文献   

10.
The hypothesis thatTypha domingensis (cattail) can invade tidal marshes only after soil salinities are substantially reduced was tested experimentally by comparing the salt tolerance of seeds, seedlings, and plants reared from rhizomes. Germination rates for four southern California populations reached 100% in fresh water, decreasing to 2% at 20‰. The salt tolerance of seeds from three coastal populations was lower than that of the Salton Sea population. Salt tolerance of plants grown in the lab did not increase with age for seedlings up to 8 weeks old. Rhizome-bearing plants had greatly decreased growth at 10‰ and no growth at 25‰ However, rhizomes of about 5% of the plants survived 9 months at 45‰. The seeds and seedlings are salt sensitive, which explains why invasion into tidal marshes is restricted to prolonged periods of low soil salinity. The older, rhizome-bearing plants are salt tolerant, which explains how invading plants persist persist under hypersaline conditions.  相似文献   

11.
12.
Lateritic bauxites in the coastal lowlands of Suriname form part of a belt along the northern margin of the Guiana Shield that has long been one of the world's major bauxite producing regions. The Surinamese deposits, many of which with an extensive mining history, originated on Tertiary siliciclastic sediments and were mostly buried under a layer of young sediments. The bauxite-bearing sequences are generally topped with an iron-rich layer largely made up of hematite and goethite. It covers a gibbsite-rich bauxite horizon that passes downward into a kaolinitic bottom section containing anatase and zircon as main accessory minerals. Weathering profiles across formerly mined deposits were analyzed for geochemical and mineralogical properties aimed at exploring compositional diversity, underlying controls of bauxite-formation and the nature of precursor sediments.Studied profiles in different parts of the coastal plain reveal overall similarities between individual deposits in showing significant depletion of Si, K, Na, Mg and Ca and strong, primarily residual, relative enrichment of Al, Ti, Zr, Nb, Hf, Ta and Th. In detail, however, there are distinct differences in major and trace-element signatures, accessory mineral assemblages, facies distribution and provenance of the terrigenous precursor sediments. Enrichments in high field-strength elements and heavy rare earth elements are largely attributable to accumulation of heavy minerals like zircon in the precursor. Petrological and trace-element evidence does not support a direct genetic relationship between bauxite and the underlying saprolitic clays. The complex petrologic characteristics and compositional heterogeneity of the coastal-plain deposits can essentially be explained by element fractionation, primarily through selective leaching, in combination with relative and absolute enrichment processes, erosion and reworking during two-stage, polycyclic bauxitization of a heterogeneous precursor.  相似文献   

13.
Groundwater responses to tide fluctuations in different hydrogeological situations have been investigated for many years. Various solutions have been derived using the assumption that tides are composed of sinusoidal components, neglecting non-periodic variables. This approach has resulted in the introduction of some inaccuracy in predictions of groundwater responses to sea-level variation. To resolve this problem, this study used the Fourier sine transform method to derive an analytical solution based on the measured sea-level boundary. Compared with an analytical solution based on a sinusoidal assumption and a numerical solution generated by MODFLOW, this solution provided better performance in groundwater-level prediction in a coastal confined aquifer in Zhuhai City, China. The hydrogeological parameters estimated by the three aforementioned methods fitted well with those estimated by field surveys and pumping tests. The introduced analytical solution not only reflects the physical mechanisms of tide-induced groundwater-level fluctuation, but also reveals the non-periodic fluctuation of groundwater level caused by sea-level variation. This solution may also be used to evaluate groundwater responses to random mechanical stresses.  相似文献   

14.
The El Jadida landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 150 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the ground. At the site of this landfill, the groundwaters circulate deeply (10–15 m) in the Cenomanian rock (calcareous–marl), which is characterised by an important permeability from cracks. The soil is sand–clay characterized by a weak coefficient of retention.The phreatic water ascends to the bottom of three quarries, which are located within the landfill. These circumstances, along with the lack of a leachate collection system, worsen the risks for a potential deterioration of the aquifer.To evaluate groundwater pollution due to this urban landfill, piezometric level and geochemical analyses have been monitored since 1999 on 60 wells. The landfill leachate has been collected from the three quarries that are located within the landfill. The average results of geochemical analyses show an important polluant charge vehiculed by landfill leachate (chloride = 5680 mg l−1, chemical oxygen demand = 1000 mg l−1, iron = 23 000 μg l−1). They show also an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 4.5 mS cm−1 in electric conductivity, 1620 and 1000 mg l−1 respectively in chlorides and sulfate (), 15–25 μg l−1 in cadmium, and 60–100 μg l−1 in chromium. These concentrations widely exceed the standard values for potable water.Several determining factors in the evolution of groundwater contamination have been highlighted, such as (1) depth of the water table, (2) permeability of soil and unsaturated zone, (3) effective infiltration, (4) humidity and (5) absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a system of collection, drainage and treatment of landfill leachates and to emplace an impermeable surface at the site of landfill, in order to limit the infiltration of leachate.  相似文献   

15.
Multivariate statistical techniques including cluster analysis and principal components analysis were applied on 22 variables consisted of 3 physicochemical parameters, 8 major ions and 11 trace elements. Samples were collected from the south Rhodope multilayered coastal aquifer in north Greece which is facing saltwater intrusion and anthropogenic contamination over the last 35 years. Cluster analysis grouped the variables into five main groups while principal components analysis revealed four distinct hydrochemical processes in the aquifer system, explaining 84.5 % of the total variance between the variables. The identified processes correspond to, saltwater intrusion and subsequent reverse cation exchange, the presence of deep connate groundwater masses, application of fertilizers in shallow wells and anthropogenic contamination with heavy metals nearby an improperly constructed landfill. The wells categorized with the above techniques were grouped and five constituent ratios Na/Cl, (Mg + Ca)/Cl, Ca/(HCO3 + SO4), Ca/SO4 and Ca/Mg were utilized to identify the ones which enable the more accurate distinction between the group cases. The results of stepwise discriminant analysis showed that the calculated classification function can distinguish almost 80 % of groundwater samples with the Na/Cl ratio being the most statistically significant grouping variable. All the aforementioned statistical models managed to successfully identify numerous hydrochemical processes in a complex multilayered aquifer system and to explicitly attribute them for every investigated well, allowing a deeper insight into groundwater chemical characteristics with the use of an optimized smaller number of variables.  相似文献   

16.
Seawater intrusion is a major problem in urbanized coastal regions of India which is due to over exploitation of groundwater for various purposes. This study was carried out with the objective of assessing the zone of mixing between seawater and groundwater in the coastal aquifer in south of Chennai, Tamil Nadu, India using high resolution electrical resistivity tomography. High resolution electrical resistivity tomography was carried out in five profiles perpendicular to the sea using IRIS make SYSCAL Pro-96 system with 2.5 m or 5 m inter-electrode separation. The maximum length of the profile was 170 m which resulted in a depth of investigation of 28.7 m. The apparent resistivity measured in this area varies from 0.3 ohm-m to 30,000 ohm-m. The apparent resistivity of saturated zone decreases towards the sea, indicating the influence of seawater. This was also confirmed by measuring the electrical conductivity of groundwater, which gradually increases from 156 μS/cm to 3430 μS/cm towards the sea. Further, the concentration profiles of electrical conductivity, sodium, chloride and chloride / bicarbonate ratio are compared with the high resolution electrical resistivity tomography profile. The distance of influence of seawater is comparatively high in northern part than in southern part of the area. The high resolution electrical resistivity tomography was effectively used to determine the effect of seawater mixing with groundwater.  相似文献   

17.
Coastal aquifers are usually exposed to saltwater intrusion. Therefore, groundwater extracted from these aquifers should be regulated considering their dimensions and effective parameters. In this paper, optimum discharge from a large number of exploitation wells is evaluated according to variations of width, length, and anisotropy coefficient in the Qom aquifer near the salt lake in central Iran. First, the wells are divided into clusters to decrease the number of decision variables. Then, the location and discharge from each cluster is obtained using SEAWAT and charged system search (CSS) simulation–optimization model with the assumption of three-dimensional variable density flow. The maximum discharge considering various anisotropy rates is computed based on different values of lengths and widths of the aquifer. Finally, an M5-tree model is trained using the obtained samples to derive a linear relationship between input and output data. Based on the results, for various ranges of width and length of an aquifer with impermeable boundaries, different linear equations for optimum discharge are obtained. Also, it was found that for an aquifer with a small width, the critical discharge is a function of the length while the effect of the boundaries is negligible. Sensitivity analysis of the anisotropy coefficient reveals that with increasing the anisotropy rate, thickness and slope of the transition zone decrease and as the maximum discharge increases consequently. However, the sensitivity of the discharge to anisotropy rate is not remarkable. A comparison between the results of this study with those of the analytical method based on sharp interface assumption is carried out. For the critical condition, the best agreement between analytical equation (\(\overline {L} =0.87\overline {W} +0.62\)) and proposed method (\(\overline {L} =0.83\overline {W} - 1.41\)) is achieved for the anisotropic aquifer when the 50% isochlor is assumed as the measure of salt water intrusion.  相似文献   

18.
夏玉强  李海龙 《地学前缘》2009,16(6):276-281
通过分析滨海含水层中观测孔的水位动态资料,确定含水层的水力性质和某些参数,或推测含水层在海底的延伸长度和露头处是否存在覆盖层,是水文地质学家一直很感兴趣的问题之一。文中充分分析了广西北海半岛滨海地区水文地质条件,将研究区第一个承压含水层系统概化为具有上覆弱透水层越流和含水层海底露头覆盖层的垂向三层结构的不稳定流模型。应用该模型的解析解对广西北海半岛滨海含水层系统的观测数据进行了分析,拟合效果很好,并利用最小平方罚函数法估算了研究区含水层的参数。  相似文献   

19.
The Salalah central sewage treatment plant has been designed to treat 20,000 m3/day at the first stage and two further stages to double the initial capacity. The plant currently (2005) treats more than 15,000 m3/day effluents to a tertiary level, and after chlorination phase, the effluents are recharged into tube wells in a line parallel to the coast. The process aims to help stabilize the seawater interface and a part to be recovered from hand-dug wells/boreholes further inland and downstream. A three-dimensional flow and solute advection transport model was developed to assess the effectiveness of the proposed recharge scheme and to track the solute transport with respect to the design system. The advection transport model predicted that in 2020 the maximum pathlines of the injection fluids would reach the abstraction wells that are located 600 m, southward of the injection bores in about 1-year travel time in the case of the no-management interference and more than that southward under management interference. The developed flow predicted the wedge of the saline intrusion in 2019 is tracked up to 2.7 and 3.4 km from the shoreline with the injection and without the injection, respectively under constant underflow. The injection scheme is effective in pushing back the saline zone front by 700 m. This study argues that the treated wastewater would help to increase the water levels at the vicinity of the injection line and to reduce the influence of saline inflows from the coast. The reclaimed sewage recharge scheme is examined in the case of the Salalah coastal aquifer using groundwater simulation, which can also be applied to other regions with similar conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号