首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iodine enrichment in the Atacama Desert of northern Chile is widespread and varies significantly between reservoirs, including nitrate-rich “caliche” soils, supergene Cu deposits and marine sedimentary rocks. Recent studies have suggested that groundwater has played a key role in the remobilization, transport and deposition of iodine in Atacama over scales of millions-of-years. However, and considering that natural waters are also anomalously enriched in iodine in the region, the relative source contributions of iodine in the waters and its extent of mixing remain unconstrained. In this study we provide new halogen data and isotopic ratios of iodine (129I/I) in shallow seawater, rivers, salt lakes, cold and thermal spring water, rainwater and groundwater that help to constrain the relative influence of meteoric, marine and crustal sources in the Atacama waters. Iodine concentrations in surface and ground waters range between 0.35 μM and 26 μM in the Tarapacá region and between 0.25 μM and 48 μM in the Antofagasta region, and show strong enrichment when compared with seawater concentrations (I = ∼0.4 μM). In contrast, no bromine enrichment is detected (1.3–45.7 μM for Tarapacá and 1.7–87.4 μM for Antofagasta) relative to seawater (Br = ∼600 μM). These data, coupled to the high I/Cl and low Br/Cl ratios are indicative of an organic-rich sedimentary source (related with an “initial” fluid) that interacted with meteoric water to produce a mixed fluid, and preclude an exclusively seawater origin for iodine in Atacama natural waters. Iodine isotopic ratios (129I/I) are consistent with halogen chemistry and confirm that most of the iodine present in natural waters derives from a deep initial fluid source (i.e., groundwater which has interacted with Jurassic marine basement), with variable influence of at least one atmospheric or meteoric source. Samples with the lowest isotopic ratios (129I/I from ∼215 to ∼1000 × 10−15) strongly suggest mixing between the groundwater and iodine storage in organic-rich rocks (with variable influence of volcanic fluids) and pre-anthropogenic meteoric water, while samples with higher values (∼2000–93,700 × 10−15) indicate the input of anthropogenic meteoric fluid. Taking into account the geological, hydrologic and climatic features of the Atacama region, we propose that the mean contribution of anthropogenic 129I is associated with 129I releases during nuclear weapon tests carried out in the central Pacific Ocean until the mid 1990's (129I/I = ∼12,000 × 10−15). This source reflects rapid redistribution of this radioisotope on a global scale. Our results support the notion of a long-lived continental iodine cycle in the hyperarid margin of western South America, which is driven by local hydrological and climate conditions, and confirm that groundwater was a key agent for iodine remobilization and formation of the extensive iodine-rich soils of Atacama.  相似文献   

2.
The long-lived halogen radioisotopes 129I and 36Cl provide valuable information regarding the source of fluids in hydrocarbon systems and in localized areas where infiltration of younger meteoric water has occurred. Despite the utility of these two isotopes in providing time-signatures for fluid end-members, considerable uncertainty remains regarding the interpretation of “intermediate-age” waters in hydrologic systems. These waters are likely the result of the combination of two or more halogen sources at some time in the past, each with its own characteristic concentration and isotopic composition. In order to unravel the evolution of these “intermediate-age” waters, the effect that infiltration of meteoric water has on the isotopic composition of older formation waters is modeled. Also evaluated is the effect that the timing of dilution has on 129I and 36Cl signatures observed in the present, specifically, the hypothesis that halogen isotopic signatures imparted by the mixing of brine and meteoric waters early in the development of a sedimentary basin are quantitatively different from those imparted by the mixing of old brines with recent meteoric waters.  相似文献   

3.
The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small perturbations to temperature or productivity can modify atmospheric CH3Br. Therefore atmospheric CH3Br should be sensitive to climate conditions. Our modeling indicates that climate-induced CH3Br variations can be larger than those resulting from small (+/- 25%) changes in the anthropogenic source, assuming that this source comprises less than half of all inputs. Future measurements of marine CH3Br, temperature, and primary production should be combined with such models to determine the relationship between marine biological activity and CH3Br production. Better understanding of the biological term is especially important to assess the importance of non-anthropogenic sources to stratospheric ozone loss and the sensitivity of these sources to global climate change.  相似文献   

4.
An update on the natural sources and sinks of atmospheric mercury   总被引:1,自引:0,他引:1  
This paper summarizes recent advances in the understanding of the exchange of Hg between the atmosphere and natural terrestrial surfaces including substrates (soil, rocks, litter-covered surfaces and weathered lithological material) and foliage. Terrestrial landscapes may act as new sources of atmospheric Hg, and as repositories or temporary residences for anthropogenically and naturally derived atmospheric Hg. The role of terrestrial surfaces as sources and sinks of atmospheric Hg must be quantified in order to develop regional and global Hg mass balances, and to assess the efficacy of regulatory controls on anthropogenic point sources in reduction of human Hg exposure.  相似文献   

5.
To demonstrate the atmospheric emission characteristics of cadmium (Cd), which is considered an important contaminant to human health and environment, a comprehensive emission inventory of Cd has been established by applying the best available emission factors and activity data for the first time. This inventory covers major anthropogenic sources in China and a bottom-up approach is adopted to compile the inventory for the sources where possible. The total emissions of Cd are estimated at about 743.77 metric tons for the year 2009, of which the contributions of industrial processes and combustion sources are approximately 56.6 and 43.4 %, respectively. Nonferrous metals smelting including copper, lead, and zinc, ranks as the leading source accounting for about 40.6 % of the total. The high contribution results from the rapid growth of nonferrous metallurgical industry that reflects a new focus of Cd emission pollution in China. Cd emissions from coal combustion are estimated at approximately 273.69 metric tons, with a share of 36.8 %, in which industrial coal-burning sector is thought to be the primary source. Moreover, Cd emissions are spatially allocated onto grid cells with a resolution of 0.5° × 0.5°, indicating that the emissions are mainly distributed among the regions of eastern, central and southern China. In addition, the uncertainties in the inventory are quantified by using a Monte Carlo simulation, and the overall uncertainty falls within a range of ?15 to 48 %. It implies that more field tests for industrial coal combustion and metals smelting process are very necessary.  相似文献   

6.
7.
8.
Topsoil and subsoil samples located adjacent and distant from the mining operations sites were collected. Most total metals showed no significant differences between topsoil and subsoil or proximity, suggesting that they derive from endogenous parent material. There was an increment in Hg in topsoils adjacent to the mining operation sites, indicating a deposition of Hg from the amalgamation areas. Higher values of total, extractable and soluble As were observed adjacent to the mining operation sites, probably related to the presence of residues, rich in arsenopyrite. Organic matter and clay contents control the concentrations of EDTA-extractable Cd and Zn, while soil acidity was associated with the behaviour of As, Hg and Cu. In contrast the concentration of EDTA-extractable Pb was directly affected by its total concentration. In general, soluble metals were highly independent, without significant correlations with any soil physical and chemical properties.  相似文献   

9.
Coal seam gas (CSG) has the potential to be a low-carbon transition fuel, but CSG fields may be a source of fugitive emissions of methane (CH4). We use mobile cavity ring-down spectroscopy (CRDS) measurements to attribute CH4 concentrations to sources in southeastern Australia including CSG fields. Our study shows higher CH4 concentration values associated with both natural and anthropogenic sources other than CSG. These include urban landfills (>320 ppm) and urban infrastructure (>17 ppm), agricultural activities (>20 ppm) and open-pit coal mines (>30 ppm). We confirm reports of increased concentration of CH4 downwind of some parts of CSG fields (<5 ppm), but elevated concentrations are not endemic and could not be separated from contributions of natural geological seeps (>16 ppm) that form part of the background levels. While CRDS allows direct determination of CH4 sources, repeat measurements show the strong influence of atmospheric conditions on concentration and highlight the need for methods that quantify flux.  相似文献   

10.
《Applied Geochemistry》2003,18(2):283-309
International agreements (e.g. OSPAR) on the release of hazardous substances into the marine environment and environmental assessments of shelf seas require that concentrations and bioavailability of metals from anthropogenic sources can be distinguished from those originating as a result of natural geological processes. The development of a methodology for distinguishing between anthropogenic and natural sources of metals entering the Irish Sea through river inputs is described. The geochemistry of stream, river and estuarine sediments has been used to identify background geochemical signatures, related to geology, and modifications to these signatures by anthropogenic activities. The British Geological Survey (BGS) geochemical database, based on stream sediments from 1 to 2 km2 catchments, was used to derive the background signatures. Where mining activity was present, the impact on the signature was estimated by comparison with the geochemistry of sediments from a geologically similar, but mining free, area. River sediment samples taken upstream and downstream of major towns were used respectively to test the validity of using stream sediments to estimate the chemistry of the major river sediment and to provide an indication of the anthropogenic impact related to urban and industrial development. The geochemistry of estuarine sediments from surface samples and cores was then compared with river and offshore sediment chemistry to assess the importance of riverine inputs to the Irish Sea. Studies were undertaken in the Solway, Ribble, Wyre and Mersey estuaries. The results verify that catchment averages of stream sediments and major river samples have comparable chemistry where anthropogenic influences are small. Major urban and industrial (including mining) development causes easily recognised departures from the natural multi-element geochemical signature in river sediment samples downstream of the development and enhanced metal levels are observed in sediments from estuaries with industrial catchments. Stream sediment chemistry coupled with limited river and estuarine sampling provides a cost-effective means of identifying anthropogenic metal inputs to the marine environment. Investigations of field and laboratory protocols to characterise biological impact (bioaccumulation) of metals in sediments of the Irish Sea and its estuaries show that useful assessments can be made by a combination of surveys with bioindicator species such as clams Scrobicularia plana, selective sediment measurements that mimic the ‘biologically available’ fractions, and laboratory (mesocosm) studies.  相似文献   

11.
Nitrate and water quality parameters (temperature, salinity, dissolved oxygen, turbidity, and depth) were measured continuously with in situ NO3 analyzers and water quality sondes at two sites in Elkhorn Slough in Central California. The Main Channel site near the mouth of Elkhorn Slough was sampled from February to September 2001. Azevedo Pond, a shallow tidal pond bordering agricultural fields further inland, was sampled from December 1999 to July 2001. Nitrate concentrations were recorded hourly while salinity, temperature, depth, oxygen, and turbidity were recorded every 30 min. Nitrate concentrations at the Main Channel site ranged from 5 to 65 μM. The propagation of an internal wave carrying water from ≈100 m depth up the Monterey Submarine Canyon and into the lower section of Elkhorn Slough on every rising tide was a major source of nitrate, accounting for 80–90% of the nitrogen load during the dry summer period. Nitrate concentrations in Azevedo Pond ranged from 0–20 μM during the dry summer months. Nitrate in Azevedo Pond increased to over 450 μM during a heavy winter precipitation event, and interannual variability driven by differences in precipitation was observed. At both sites, tidal cycling was the dominant forcing, often changing nitrate concentrations by 5-fold or more within a few hours. Water volume flux estimates were combined with observed nitrate concentrations to obtain nitrate fluxes. Nitrate flux calculations indicated a loss of 4 mmol NO3 m?2 d?1 for the entire Elkhorn Slough and 1 mmol NO3 m?2 d?1 at Azevedo Pond. These results suggested that the waters of Elkhorn Slough were not a major source of nitrate to Monterey Bay but actually a nitrate sink during the dry season. The limited winter data at the Main Channel site suggest that nitrate was exported from Elkhorn Slough during the wet season. Export of ammonium or dissolved organic nitrogen, which we did not monitor, may balance some or all of the NO3 flux.  相似文献   

12.
岷江水流量约为8.9×1010m3/yr,约占长江全流域水量10%。作者对4个监测站监测数据的分析发现,岷江TZ 高于世界河流平均值,具有富HCO3-、Ca2 特征;流域化学剥蚀通量为20.48×106t/yr,约占长江流域的10%;化学剥蚀速率为155.9t/km2.yr。岷江在流经四川盆地时主要离子SO42-、Cl-和Ca2 均已受到了人类活动较为严重的影响,酸雨是SO42-的主要污染来源,Cl的污染来源包括生活和工业废水、化肥和井盐开采,农业生产使用的富Ca化肥应是河流Ca污染源之一。  相似文献   

13.
Polymetamorphic metapelites and embedded eclogites share a complex, episodic interplay of dehydration and fluid infiltration at the eclogite type‐locality (Saualpe–Koralpe, Eastern Alps, Austria). The metapelites inherited a fluid content (i.e. mineral‐bound OH expressed in terms of mol.% H2O) of ~6–7 mol.% H2O from high‐T–low‐P metamorphism experienced during the Permian. At or near Pmax of the subsequent Eoalpine event (~20 kbar and 680°C), the breakdown of paragonite to Na‐rich clinopyroxene and kyanite in metapelites released a discrete pulse of hydrous fluid. Prior to the dehydration event, the rocks were largely fluid absent, allowing only limited re‐equilibration during the prograde Eoalpine evolution. Similarly, Permian‐aged gabbros have persisted metastably due to the absence of a catalyst prior to fluid‐induced re‐equilibration. The fluid triggered partial to complete eclogitization along a fluid infiltration front partially preserved in metagabbro. Near‐isothermal decompression to ~7.5–10 kbar and 670–690°C took place under fluid‐absent conditions. After decompression, a second breakdown of phengitic white mica and garnet produced muscovite, biotite, plagioclase and ~0.1–0.7 mol.% H2O that enhanced extensive fluid‐aided re‐equilibration of the metapelites. Potential relicts of high‐P assemblages were largely obliterated and replaced by the recurrent amphibolite facies assemblage garnet+biotite+staurolite+kyanite+muscovite+plagioclase+ilmenite+quartz. The hydrous fluid originating from the metapelites infiltrated the embedded eclogites at these P–T conditions and induced the local breakdown of the peak assemblage omphacite and garnet to fine‐grained symplectites of diopside and plagioclase. Further fluid infiltration led to the formation of hornblende–quartz poikiloblasts at the expense of the symplectites. The metapelites re‐equilibrated until the growth of retrograde staurolite consumed any remaining free fluid, thereby terminating the process. Further re‐equilibration is inhibited by both the lack of a catalytic fluid and H2O as a reactant essential for rehydration reactions. The interplay between fluid sources and fluid sinks describes a closed cycle for the rocks at the eclogite type‐locality. Final, near‐isobaric cooling is indicated by a slight increase of XFe in garnet rims. Post‐decompression dehydration and fluid‐aided re‐equilibration arrested by the introduction of staurolite might explain the apparently homogeneous retrogression conditions as well as the notorious absence of diagnostic high‐P assemblages in metapelites at the eclogite type‐locality.  相似文献   

14.
《Applied Geochemistry》2006,21(2):318-334
To evaluate the extent of human impact on a pristine Antarctic environment, natural baseline levels of trace metals have been established in the basement rocks of the Larsemann Hills, East Antarctica.From a mineralogical and geochemical point of view the Larsemann Hills basement is relatively homogeneous, and contains high levels of Pb, Th and U. These may become soluble during the relatively mild Antarctic summer and be transported to lake waters by surface and subsurface melt water. Melt waters may also be locally enriched in V, Cr, Co, Ni, Zn and Sn derived from weathering of metabasite pods. With a few notable exceptions, the trace metal concentrations measured in the Larsemann Hills lake waters can be entirely accounted for by natural processes such as sea spray and surface melt water input. Thus, the amount of trace metals released by weathering of basement lithologies and dispersed into the Larsemann Hills environment, and presumably in similar Antarctic environments, is, in general, not negligible, and may locally be substantial.The Larsemann Hills sediments are coarse-grained and contain minute amounts of clay-size particles, although human activities have contributed to the generation of fine-grained material at the most impacted sites. Irrespective of their origin, these small amounts of fine-grained clastic sediments have a relatively small surface area and charge, and are not as effective metal sinks as the abundant, thick cyanobacterial algal mats that cover the lake floors. Thus, the concentration of trace metals in the Larsemann Hills lake waters is regulated by biological activity and thawing–freezing cycles, rather than by the type and amount of clastic sediment supply.  相似文献   

15.
This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was collected, from 2006 to 2007, in five rain gauges, at various altitudes around the summit craters. Analytical results for volcanic aerosols showed that the dominant anions were S, Cl, and F, and that the most abundant metals were K, Ca, Mg, Al, Fe, and Ti (1.5-50 μg m−3). Minor and trace element concentrations ranged from about 0.001 to 1 μg m−3. From such analysis, we derived an aerosol mass flux ranging from 3000 to 8000 t a−1. Most analysed elements had higher concentrations close to the emission vent, confirming the prevailing volcanic contribution to bulk deposition. Calculated deposition rates were integrated over the whole Etna area, to provide a first estimate of the total deposition fluxes for several major and trace elements. These calculated deposition fluxes ranged from 20 to 80 t a−1 (Al, Fe, Si) to 0.01-0.1 t a−1 (Bi, Cs, Sc, Th, Tl, and U). Comparison between volcanic emissions and atmospheric deposition showed that the amount of trace elements scavenged from the plume in the surrounding of the volcano ranged from 0.1% to 1% for volatile elements such as As, Bi, Cd, Cs, Cu, Tl, and from 1% to 5% for refractory elements such as Al, Ba, Co, Fe, Ti, Th, U, and V. Consequently, more than 90% of volcanogenic trace elements were dispersed further away, and may cause a regional scale impact. Such a large difference between deposition and emission fluxes at Mt. Etna pointed to relatively high stability and long residence time of aerosols in the plume.  相似文献   

16.
The CO2 concentration of the air in Postojna Cave (400–7900 ppm) is found to be induced by CO2 sources (human respiration contributing?~?20,000–58,000 ppm per breath, outgassing of dripwater and water seeping from the vadose zone/epikarst with a pCO2 values of 5000–29,000 ppm, and underground Pivka River having pCO2 at 2344–4266 ppm) and CO2 dilution (inflow of outside air with a CO2 concentration of?~?400 ppm). Measurements show that sinking Pivka River has the lowest CO2 concentration among plausible CO2 sources but still continuously exceeds the surrounding cave air CO2 concentration. During the winter months, intensive ventilation reduces the cave air CO2 concentration to outside levels (~?400 ppm), even in the centre of the cave system. CO2 dilution is less pronounced in summer (CO2(min)?≈?800 ppm), since the ventilation rate is not as strong as in winter and the outside air that enters the cave through breathing holes and fractures is enriched with soil CO2. During spring and autumn, the daily alternation of the ventilation regime with a smaller rate of air exchange results in yearly cave air CO2 peaks of up to?~?2400 ppm. Some dead-end passages can be much less affected by ventilation, resulting in a cave air CO2 concentration of up to 7900 ppm. The strongest diurnal CO2 peaks due to human respiration were recorded during the spring holidays (increase of up to 1300 ppm day?1), compared to considerably smaller summer peaks despite peak visits (increase of?~?600 ppm day?1).  相似文献   

17.
Groundwaters in the crystalline aquifers are the major source of drinking water in Vaniyambadi area of Vellore district. Geochemical methods in collaboration with statistical methods were applied in this industrial area to understand the natural and anthropogenic influences on groundwater quality. To accomplish this objective, groundwater samples were collected and analyzed for physicochemical parameters and the results showed a dominance in the order of Na+ > Mg2+ > Ca2+ > K+ and HCO3 > Cl > SO42− > NO3 for anions and cations, respectively. In contrast to this anion dominance were changed to Cl > HCO3 > SO42− > NO3 in samples collected near the tannery industries. Groundwater quality evaluation using TDS and TH suggested that 57% of the total samples are hard-brackish type, indicating its unsuitability for drinking purpose. Generally the water type is Na+Cl to Ca2+Mg2+HCO3 type with an intermediate Ca2+Mg2+Cl, suggesting the mixing of fresh groundwater with tannery effluent and cation exchange. Factor analysis and bivariate plots of major ions suggests that both natural and anthropogenic inputs are equally influencing the groundwater quality. Further investigations proved that silicate weathering is the dominant geogenic source of groundwater solute content, whereas tannery effluent is the anthropogenic source. Saline water mixing index (SWMI) and Cl vs NO3 bivariate plot were employed to differentiate the tannery contamination from the other anthropogenic inputs such as agricultural fertilizers, municipal sewages, etc. This analysis shows that samples 2, 4, 8 and 9 (located within the tannery cluster) have a SWMI value greater than 1, representing the groundwater–tannery effluent mixing. This study infers that groundwater in the Vaniyambadi area is under serious threat from both natural and anthropogenic contamination. However, the controlling discharge of untreated tannery effluents must be regulated to reduce the further deterioration of this vital resource in this part of the country.  相似文献   

18.
Continuous measurements of speciated atmospheric mercury (Hg), including gaseous elemental mercury (GEM), particulate mercury (PHg), and reactive gaseous mercury (RGM) were conducted in Guizhou Province, southwestern China. Guiyang Power Plant (GPP), Guiyang Wujiang Cement Plant, Guizhou Aluminum Plant (GAP), and Guiyang Forest Park (GFP) in Guiyang were selected as study sites. Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A) were used for GEM analysis. PHg and RGM were simultaneously collected by a manual sampling system, including elutriator, coupler/impactor, KCl-coated annular denuder, and a filter holder. Results show that different emission sources dominate different species of Hg. The highest average GEM value was 22.2 ± 28.3 ng·m?3 and the lowest 6.1 ± 3.9 ng·m?3, from samples collected at GPP and GAP, respectively. The maximum average PHg was 1984.9 pg·m?3 and the minimum average 55.9 pg·m?3, also from GPP and GAP, respectively. Similarly, the highest average RGM of 68.8 pg·m?3 was measured at GPP, and the lowest level of 20.5 pg·m?3 was found at GAP. We conclude that coal combustion sources are still playing a key role in GEM; traffic contributes significantly to PHg; and domestic pollution dominates RGM.  相似文献   

19.
Sediments from Guanabara Bay and two rivers were analyzed for Pb isotope composition. The results define linear groups interpreted as different sources of Pb. The samples from Iriri and Surui rivers present different Pb compositions probably resulting from two active pollutants which are transported in the waters to the Guanabara Bay, where they are mixed. The 206Pb/207Pb values of 1.151 and 1.091 presented here are in the range of Brazilian galena ore signature.  相似文献   

20.
《Chemical Geology》2002,182(2-4):443-460
Rain samples collected over the period 1995–1999 on the French Mediterranean coast have been analyzed for their trace elements and Pb isotopic compositions, both in the dissolved and particulate loads. Our results show that metal Enrichment Factors (EF) relative to Upper Erodable Crust are high for Cu, Pb, Zn and Cd and comparable to values reported about 10 years ago for North Western Mediterranean rains. Overall unradiogenic Pb isotopic compositions indicate the still visible influence of French gasoline lead on both dissolved and particulate loads. This influence is also seen on aerosols, although more variable. The examination of air mass trajectories allows us to distinguih the Pb isotopic signatures of main sources, in particular Marseille/North Italy/North Africa. Rains collected and analyzed sequentially show intra-rain variations for metal contents, metal EF and Pb isotopes, which may also be related to the main paths and altitudes of the air masses. Metal EFs and Pb isotopic data on rains from Southern France in the late 1990s are similar to recent data published on French aerosols or sediments, which are interpreted as reflecting the phasing out of leaded gasoline in the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号