首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparison of 1927, 1970 and 2002 bathymetric surveys in the Lagoon of Venice was used to reconstruct historical changes in sedimentation. A detailed GIS-based analysis of the charts revealed the timing and pattern of geomorphic changes and allowed calculation of sediment deposition and erosion for the entire lagoon and each of its four sub-basins: Treporti, Lido, Malamocco and Chioggia.  相似文献   

2.
To describe the exchange of water and sediment through the Venice Lagoon inlets a 3-D hydrodynamic and sediment transport model has been developed and applied to a domain comprising Venice Lagoon and a part of the Adriatic Sea. The model has been validated for both current velocities and suspended particle concentration against direct observations and from observations empirically derived fluxes from upward-looking acoustic Doppler current profiler probes installed inside each inlet. The model provides estimates of the suspended sediment transport in the lower 3 m of the water column that is not detected by acoustic Doppler current profiler sensors. The bedload model prediction has been validated against measured sand transport rates collected by sand traps deployed in the Lido and Chioggia inlets. Results indicate that, in the Lido inlet, 87% of the total load is in suspension, while the rest moves as bedload.  相似文献   

3.
A hydrodynamic model of the Venice Lagoon and the Adriatic Sea has been developed in order to study the exchanges at the inlets of the Venice Lagoon, a complex morphological area connecting the sea and the lagoon. The model solves the shallow water equations on a spatial domain discretized by a staggered finite element grid. The grid represents the Adriatic Sea and the Venice Lagoon with different spatial resolutions varying from 30 m for the smallest channels of the lagoon to 30  km for the inner areas of the central Adriatic Sea. Data from more than ten tide gauges displaced in the Adriatic Sea have been used in the calibration of the simulated water levels. After the calibration, the tidal wave propagation in the North Adriatic and in the Venice Lagoon is well reproduced by the model. To validate the model results, empirical flux data measured by acoustic Doppler current profiler probes installed inside the inlets of Lido and Malamocco have been used and the exchanges through the three inlets of the Venice Lagoon have been analyzed. The comparison between modeled and measured fluxes at the inlets outlines the efficiency of the model to reproduce both tide- and wind-induced water exchanges between the sea and the lagoon. Even in complex areas, where highly varying resolution is needed, the model is suitable for the simulation of the dominating physical processes.  相似文献   

4.
Four end members were inverted from surface sediment grain size data from the South Yellow Sea by using the end member (EM) model. The sediment provenance and hydrodynamic meanings of each EM were discussed based on the frequency and spatial distributions of the EMs. EM1 and EM2 reflect the dynamic transport and sorting processes of the terrigenous sediment, and EM3 and EM4 reflect the modification of relic sand. The ocean front mainly affected transport of relatively coarse terrigenous sediment in the South Yellow Sea, and the fine terrigenous sediments were generally unaffected by the ocean front. Fine sediment could pass through the ocean front and deposit in the central South Yellow Sea under weak tidal condition to form most part of the Central Yellow Sea Mud (CYSM). The CYSM extended toward northwest and southwest. The sediment in the north part of the CYSM mainly consisted of sediment from the Yellow River (Huanghe) in the northwest, and the sediment in the southwest part of CYSM mainly consisted of Subei coastal sediments from both the Yangtze River (Changjiang) and the Yellow River. Compared to the traditional method of sediment grain size analysis, the EM model can determine the EMs and provide better explanations of the sediment provenance and dynamic regional sedimentary environment in the study area.  相似文献   

5.
The residual flow in the inlets of Venice lagoon subject to Bora and Sirocco winds has been studied. Current velocities have been monitored since 2001 using Acoustic Doppler Current Profilers (ADCP) installed on the beds of the inlets that connect the lagoon to the Adriatic Sea; these inlets are Lido, Malamocco and Chioggia. Wind velocity data have also been continuously measured at an oceanographic platform 14.8 km offshore from the lagoon; these data were subsequently decomposed into Principal Components, which are associated with Bora and Sirocco wind directions. Analyses show that the inflow in Lido inlet is strongly related to the Bora wind. The outflow in Chioggia inlet occurs during Bora events but shows a slightly weaker correlation with the wind speed, while Malamocco inlet shows little or no influence of Bora winds on flow patterns. A net residual inflow through Lido and Malamocco inlet was found, while outflow prevails in Chioggia inlet. During Bora events, the average residual inflow increased three-fold in Lido inlet, whereas the outflow in Chioggia inlet doubled. The current velocities in Lido and Chioggia inlets are best described by an exponential function of wind velocity with exponents of −0.1187 and −0.0924, respectively. The response to Sirocco events was evident mainly in Chioggia inlet. Specifically, there was a slow down of the outflow in linear proportion to wind speed. In excess of 10 m/s a complete current reversal was observed. Lido and Malamocco inlets showed little or no response to Sirocco winds, except during rare cases when wind speeds exceeded 15 m/s.  相似文献   

6.
The response of the Yalu River Estuary to human activities was investigated.Changes of sediment dynamics during the past 10 years were explored through hydrodynamic calculation,as well as heavy mineral...  相似文献   

7.
Sea level change is an important consequence of climate change due to its impact on society and ecosystems. Analyses of tide-gauge data have indicated that the global sea level has risen during the 20th century and several studies predict that the mean sea level will continue to rise during the 21st century, intensifying coastal hazards worldwide. In Portugal, the Ria de Aveiro is expected to be one of the regions most affected by sea level change.The main aim of this study is to evaluate the potential impacts of the mean sea level change on the hydrodynamics and morphodynamics of the Ria de Aveiro. With this purpose, local mean sea level change was projected for the period 2091-2100 relative to 1980-1999, for different Special Report on Emission Scenarios (SRES) scenarios developed by the Intergovernmental Panel on Climate Change (IPCC). These projections revealed an increase in the mean sea level between 0.28 m under scenario B1 and 0.42 m under scenario A2.The results obtained for sea level rise scenario A2 projection were used to force the morphodynamic model MORSYS2D, previously implemented for the Ria de Aveiro. The modelling results were compared with model forecasts for the present sea level. The residual sediment transport and its balance at the lagoon inlet were computed and analysed for both situations. While the residual sediment transport is generally seaward, sediments tend to deposit inside the inlet due to the weak sediment transport at its mouth. The direction of the residual flux will not change with the sea level rise, but sediment fluxes will intensify, and accretion inside the inlet will increase.The rise in mean sea level will also affect the lagoon hydrodynamics. The tidal prism at the lagoon mouth will increase by about 28% in spring tide. In the lower lagoon only a slight increase of the tidal asymmetry is predicted.  相似文献   

8.
Natural tidal channels often need deepening for navigation purposes (to facilitate larger vessels). Deepening often leads to tidal amplification, salinity intrusion, and increasing sand and mud import. These effects can be modelled and studied by using detailed 3D models. Reliable simplified models for a first quick evaluation are however lacking. This paper presents a simplified model for sand transport in prismatic and converging tidal channels. The simplified model is a local model neglecting horizontal sand transport gradients. The latter can be included by coupling (as post-processing) the simplified model to a 2DH or 3D flow model. Basic sand transport processes in stratified tidal flow are studied based on the typical example of the tidal Rotterdam Waterway in The Netherlands. The objective is to gain quantitative understanding of the effects of channel deepening on tidal penetration, salinity intrusion, tidal asymmetry, residual density-driven flow, and the net tide-integrated sand transport. We firstly study the most relevant tidal parameters at the mouth and along the channel with simple linear tidal models and numerical 2DH and 3D tidal models. We then present a simplified model describing the transport of sand (TSAND) in tidal channels. The TSAND model can be used to compute the variation of the depth-integrated suspended sand transport and total sand transport (incl. bed-load transport) over the tidal cycle. The model can either be used in stand-alone mode or with computed near-bed velocities from a 3D hydrodynamic model as input data.  相似文献   

9.
The paper presents the 3D finite element simulation of tidal flow and Sediment transport in the estuarine region of the Haihe river. The proposed model adopts sigma-transformation of the hydrodynamic and sediment transport equations. The hydrodynamic and sediment transport models are verified in case of a simple test problem for which analytical solutions are available. Finally the models are applied to muddy Haihe river estuary of North China and it is claimed that hydrodynamic and sediment transport models give a reliable comparison with the observed field data. However, there are certain discrepancies, and some reasonable questions regarding the present state-of-art, in the modeling of three-dimensional multilevel hydrodynamics and sediment transport, which are provided below for answer.  相似文献   

10.
The influence of wave–bedform feedbacks on both the initial formation of shoreface-connected sand ridges (sfcr) and on grain size sorting over these ridges on micro-tidal inner shelves is studied. Also, the effect of sediment sorting on the growth and the migration of sfcr is investigated. This is done by applying a linear stability analysis to an idealized process-based morphodynamic model, which simulates the initial growth of sfcr due to the positive coupling between waves, currents, and an erodible bed. The sediment consists of sand grains with two different sizes. New elements with respect to earlier studies on grain sorting over sfcr are that wave-topography interactions are explicitly accounted for, entrainment of sediment depends on bottom roughness, and transport of suspended sediment involves settling lag effects. The results of the model indicate that sediment sorting causes a reduction of the growth rate and migration speed of sfcr, whereas the wavelength is only slightly affected. In the case where the entrainment of suspended sediment depends on bottom roughness, the coarsest sediment is found in the troughs; otherwise, the finest sediment occurs in the troughs. Compared to previous work, modeled maximum variations in the mean grain size over the topography are in better agreement with field observations. Settling lag effects are important for the damping of high-wavenumber mode instabilities such that a preferred wavelength of the bedforms is obtained.  相似文献   

11.
Sedimentological, compositional and geochemical determinations were carried out on 54 desert and coastal dune sand samples to study the provenance of desert and coastal dunes of the Altar Desert, Sonora, Mexico. Grain size distributions of the desert dune sands are influenced by the Colorado River Delta sediment supply and wind selectiveness. The desert dune sands are derived mainly from the quartz‐rich Colorado River Delta sediments and sedimentary lithics. The dune height does not exert a control over the grain size distributions of the desert dune sands. The quartz enrichment of the desert dune sands may be due to wind sorting, which concentrates more quartz grains, and to the aeolian activity, which has depleted the feldspar grains through subaerial collisions. The desert dune sands suffer from little chemical weathering and they are chemically homogeneous, with chemical alteration indices similar to those found in other deserts of the world. The desert sands have been more influenced by sedimentary and granitic sources. This is supported by the fact that Ba and Sr concentration values of the desert sands are within the range of the Ba and Sr concentration values of the Colorado River quartz‐rich sediments. The Sr values are also linked to the presence of Ca‐bearing minerals. The Zr values are linked to the sedimentary sources and heavy mineral content in the desert dunes. The Golfo de Santa Clara and Puerto Peñasco coastal dune sands are influenced by long shore drift, tidal and aeolian processes. Coarse grains are found on the flanks whereas fine grains are on the crest of the dunes. High tidal regimens, long shore drift and supply from Colorado Delta River sediments produce quartz‐rich sands on the beach that are subsequently transported into the coastal dunes. Outcrops of Quaternary sedimentary rocks and granitic sources increase the sedimentary and plutonic lithic content of the coastal dune sands. The chemical index of alteration (CIA) values for the desert and coastal dune sands indicate that both dune types are chemically homogeneous. The trace element values for the coastal dune sands are similar to those found for the desert dune sands. However, an increase in Sr content in the coastal dune sands may be due to more CaCO3 of biogenic origin as compared to the desert dune sands. Correlations between the studied parameters show that the dune sands are controlled by sedimentary sources (e.g. Colorado River Delta sediments), since heavy minerals are present in low percentages in the dune sands, probably due to little heavy mineral content from the source sediment; grain sizes in the dune sands are coarser than those in which heavy minerals are found and/or the wind speed might not exert a potential entrainment effect on the heavy mineral fractions to be transported into the dune. A cluster analysis shows that the El Pinacate group is significantly different from the rest of the dune sands in terms of the grain‐size parameters due to longer transport of the sands and the long distance from the source sediment, whereas the Puerto Peñasco coastal dune sands are different from the rest of the groups in terms of their geochemistry, probably caused by their high CaCO3 content and slight decrease in the CIA value. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
This study presents the results of experimental compaction while measuring ultrasonic velocities of sands with different grain size, shape, sorting and mineralogy. Uniaxial mechanical compaction tests up to a maximum of 50 MPa effective stress were performed on 29 dry sand aggregates derived from eight different sands to measure the rock properties. A good agreement was found between the Gassmann saturated bulk moduli of dry and brine saturated tests of selected sands. Sand samples with poor sorting showed low initial porosity while sands with high grain angularity had high initial porosity. The sand compaction tests showed that at a given stress well‐sorted, coarse‐grained sands were more compressible and had higher velocities (Vp and Vs) than fine‐grained sands when the mineralogy was similar. This can be attributed to grain crushing, where coarser grains lead to high compressibility and large grain‐to‐grain contact areas result in high velocities. At medium to high stresses the angular coarse to medium grained sands (both sorted sands and un‐sorted whole sands) showed high compaction and velocities (Vp and Vs). The small grain‐to‐grain contact areas promote higher deformation at grain contacts, more crushing and increased porosity loss resulting in high velocities. Compaction and velocities (Vp and Vs) increased with decreasing sorting in sands. However, at the same porosity, the velocities in whole sands were slightly lower than in the well‐sorted sands indicating the presence of loose smaller grains in‐between the framework grains. Quartz‐poor sands (containing less than 55% quartz) showed higher velocities (Vp and Vs) compared to that of quartz‐rich sands. This could be the result of sintering and enlargement of grain contacts of ductile mineral grains in the quartz‐poor sands increasing the effective bulk and shear stiffness. Tests both from wet measurements and Gassmann brine substitution showed a decreasing Vp/Vs ratio with increasing effective stress. The quartz‐rich sands separated out towards the higher side of the Vp/Vs range. The Gassmann brine substituted Vp and Vs plotted against effective stress provide a measure of the expected velocity range to be found in these and similar sands during mechanical compaction. Deviations of actual well log data from experimental data may indicate uplift, the presence of hydrocarbon, overpressure and/or cementation. Data from this study may help to model velocity‐depth trends and to improve the characterization of reservoir sands from well log data in a low temperature (<80–100o C) zone where compaction of sands is mostly mechanical.  相似文献   

13.
Analysis of grain size statistics of upper foreshore sediments on sand beaches at two tidal inlets in New Jersey, U.S.A. reveals that sediments are coarser at beaches flanking the inlets than updrift, although sediments become finer downdrift at the broad, regional scale. The local reversal of the regional trend in size grading is attributed to: (1) the offshore diversion of the finer sands along the surf zone on the ebb tidal delta, and (2) the removal of the finer sands from the inlet flank beach caused by low wave energy conditions at low stages of the tide and by deflation. Sediments thus become coarser at inlet beaches as a result of alterations in the interaction of waves with the beach and as a result of aeolian processes, not solely as a result of increased tidal current velocities as previously reported. The distance along the New Jersey barrier islands over which inlet processes are likely to affect changes in sediment size updrift averages less than 1100 m, but the impacts of inlets on the sedimentary record can be extended greater distances as a result of inlet migration.  相似文献   

14.
The morphologic changes in estuaries and coastal lagoons are very complex and constitute a challenging task in coastal research. The bathymetric changes result from the combined action of tides, waves, rivers discharge and wind stress in the area of interest. Additionally, an accurate knowledge of the sediment transport is essential to achieve a good morphological characterization. This work establishes the influence of the wave climate on the morphodynamics of the Ria de Aveiro lagoon inlet by analysing the numerical results of the morphodynamic modelling system MORSYS2D. The numerical simulations considered a realistic coupled forcing of tidal currents and waves. The computed sediment fluxes and bathymetric changes are analysed and compared with the erosion and accretion trends obtained from the numerical simulations forced only by tidal currents, in order to establish the wave climate influence. The final bathymetry and the corresponding changes are compared with bathymetric data collected through surveys. It is concluded that: (a) the morphodynamics of the study area is dominated by the wave regime in the lagoon inlet and nearshore areas, while in the inner areas is tidally dominated; and (b) the inclusion of the wave regime forcing constitutes an improvement in order to accurately reproduce the local morphodynamics.  相似文献   

15.
We explore the link between channel‐bed texture and river basin concavity in equilibrium catchments using a numerical landscape evolution model. Theory from homogeneous sediment transport predicts that river basin concavity directly increases with bed sediment size. If the effective grain size on a river bed governs its concavity, then natural phenomena such as grain‐size sorting and channel armouring should be linked to concavity. We examine this hypothesis by allowing the bed sediment texture to evolve in a transport‐limited regime using a two grain‐size mixture of sand and gravel. Downstream ?ning through selective particle erosion is produced in equilibrium. As the channel‐bed texture adjusts downstream so does the local slope. Our model predicts that it is not the texture of the original sediment mixture that governs basin concavity. Rather, concavity is linked to the texture of the sorted surface layer. Two different textural regimes are produced in the experiments: a transitional regime where the mobility of sand and gravel changes with channel‐bed texture, and a sand‐dominated region where the mobility of sand and gravel is constant. The concavity of these regions varies depending on the median gravel‐ or sand‐grain size, erosion rate, and precipitation rate. The results highlight the importance of adjustments in both surface texture and slope in natural rivers in response to changes in ?uvial and sediment inputs throughout a drainage network. This adjustment can only be captured numerically using multiple grain sizes or empirical downstream ?ning rules. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Lagoonal tidal inlets are a typical morphology of the Central Coast of Vietnam. Recently, navigation channels in these inlets have become increasingly threatened by siltation. This study analyses the relations between sediment distribution and transport trends (using the technique of Sediment Trend Analysis-STA■) in the lagoonal system of the De Gi inlet and then proposes appropriate countermeasures against sand deposition in the navigation channel. The STA identified three types of transport trends in the De Gi inlet, namely dynamic equilibrium, net accretion, and net erosion. Processes associated with the tidal prism have resulted in trends of sediment transport and deposition across the flood and ebb tidal shoals, which maintain a present cross-sectional area of about 1000m^2. However, longshore sediment transport from north to south resulting from northeast waves cause additional sand deposition in the channel. In addition, the effects of refraction associated with a nearby headland and jetty also increase sedimentation. These processes provide the main reasons for sediment deposition in the De Gi inlet. Short term and regular dredging helps to maintain the navigation channel. A system comprised of three jetties (north, south, and weir) is necessary to ensure the longterm cross-sectional stability of the navigation channel.  相似文献   

17.
This work investigates the recent morphological changes at the inlet of a complex coastal system (Ria de Aveiro lagoon, Portugal). This study was carried out using bathymetric data analysis and numerical simulations obtained with the 2DH morphodynamic modelling system MORSYS2D. The present simulations considered only tidal forcing, and a sensitivity analysis was performed by tuning the formula used to compute the sediment transports. A non-uniform sediment grain size distribution for the Ria de Aveiro inlet is considered in the numerical simulations, based on surveys performed in this area. The model results are analysed to assess if they resemble the observed trends of erosion and deposition, as calculated from bathymetric data. A quantitative analysis of the differences between the bathymetric changes obtained through surveys and the numerical results over a period of 3 years considering different sediment transport formulations shows that the formulations of Ackers and White (1973) and Engelund and Hansen (1967) are the ones that best describe the morphodynamic changes driven by tides in the Ria de Aveiro inlet.  相似文献   

18.
Understanding sediment sorting and bedding dynamics has high value to unravelling the mechanisms underlying geomorphological, geological, ecological and environmental imprints of tidal wetlands and hence to predicting their future changes. Using the Nanhui tidal flat on the Changjiang (Yangtze) Delta, China, as a reference site, this study establishes a schematized morphodynamic model coupling flow, sediment dynamics and bed level change to explore the processes that govern sediment sorting and bedding phenomena. Model results indicate an overall agreement with field data in terms of tidal current velocities, suspended sediment concentrations (SSCs), deposition thicknesses and sedimentary structures. Depending on the variation of tidal current strength, sand-dominated layers (SDLs) and mud-dominated layers (MDLs) tend to form during spring and neap tides, respectively. Thinner tidal couplets are developed during daily scale flood–ebb variations. A larger tidal level variation during a spring–neap tidal cycle, associated with a stronger tidal current variation, favours the formation of SDLs and tidal couplets. A larger boundary sediment supply generally promotes the formation of tidal bedding, though the bedding detail is partially dependent on the SSC composition of different sediment types. Sediment properties, including for example grain size and settling velocity, are also found to influence sediment sorting and bedding characteristics. In particular, finer and coarser sediment respond differently to spring and neap tides. During neap tides, relatively small flow velocities favour the deposition of finer sediment, with limited coarser sediment being transported to the upper tidal flat because of the larger settling velocity. During spring tides, larger flow velocities transport more coarser sediment to the upper tidal flat, accounting for distinct lamination formation. Model results are qualitatively consistent with field observations, but the role of waves, biological processes and alongshore currents needs to be included in further studies to establish a more complete understanding.  相似文献   

19.
Natural tidal channels often need deepening for navigation purposes (larger vessels). The depth increase may lead to tidal amplification, salt intrusion over longer distances, and increasing sand and mud import. Increasing fine sediment import, in turn, may start a process in which the sediment concentration progressively increases until the river becomes hyper-turbid, which may lead to increased dredging volumes and to decreased ecological values. These effects can be modeled and studied using detailed 3D models. Reliable simplified models for a first quick engineering evaluation are however lacking. In this paper, we apply both simplified and detailed 3D models to analyze the effects of channel deepening in prismatic and weakly converging tidal channels with saturated mud flow. The objective is to gain quantitative understanding of the effects of channel deepening on mud transport. We developed a simplified tidal mud model describing most relevant processes and effects in saturated mud flows with only minor horizontal transport gradients (quasi uniform conditions). The simplified model is not valid for non-saturated mud flow conditions. This model can either be used in standalone mode or in post-processing mode with computed near-bed velocities from a 3D hydrodynamic model as an input. The standalone model has been compared to various field data sets. Mud transport processes in the mouth region of muddy tidal channels can be realistically represented by the simplified model, if sufficient salinity and sediment data are available for calibration. The simulation of tidal mud transport and the behavior of an estuarine turbidity maximum (ETM) in saturated and non-saturated mud flow conditions cannot be represented by the simplified model and requires the application of a detailed 3D model.  相似文献   

20.
Bed diversity in the shallow water environment of Pappas lagoon in Greece   总被引:2,自引:0,他引:2  
<正>Acoustic classification systems and the Sediment Trend Analysis method were used to identify and map the bed diversity in a very shallow(3.0m),coastal lagoon,Pappas lagoon,Western Greece. Analogue acoustic data,collected by means of a 100 kHz side scan sonar system,were digitized and classified into six acoustic classes using recently developed acoustic classification systems (SonarClass,TargAn).By comparing the acoustic classes to ground truth data consisting of sediment grain size and visual inspection of the lagoon-bed,it is demonstrated that the six acoustic classes correlate well with the predominant surface sediment types and vegetation.Thus the spatial distribution of the classes can be considered to represent the spatial pattern of the sedimentary assemblages of the lagoon.The grain size trend analysis identified three dominant sediment pathways and directional trends which could be related to the predominant wind direction,the sediment influx through the inlets and the sediment supply from a small stream in the southern part of the lagoon.The integration of acoustic and sedimentological data together with advanced data processing systems leads to a better understanding of the sedimentary,morphological and biological processes in a shallow lagoon in different spatial and temporal scales and will therefore be beneficial to both sedimentological and biotic-diversity studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号