首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical induced polarisation surveys are used to detect chargeable materials in the earth. For interpretation of time domain electrical‐induced polarisation data a common procedure is to first invert the direct current data (electric current on time) to recover conductivity and then invert the induced polarisation data (current off‐time) to recover chargeability. This direct current‐induced polarisation inversion procedure assumes that the off time data are free of secondary electromagnetic induction effects. To comply with this, early time data are often discarded or not recorded. For mid‐time data, an electromagnetic decoupling technique, which removes electromagnetic induction in the observations, needs to be implemented. Usually, responses from a half‐space or a layered earth are subtracted. Recent capability in three‐dimensional time domain electromagnetic forward modelling and inversion allows to revisit these procedures. In a Time domain electromagnetic‐induced polarisation survey, a high sampling rate allows early time channels of the electromagnetic data to be recorded. The recovery of chargeability then follows a three‐step workflow: (i) invert early time channel time domain electromagnetic data to recover the three‐dimensional conductivity; (ii) use that conductivity to compute the time domain electromagnetic response at later time channels and subtract this fundamental response from the observations to extract the induced polarisation responses, and (iii) invert the induced polarisation responses to recover a three‐dimensional chargeability. This workflow effectively removes electromagnetic induction effects in the observations and produces better chargeability and conductivity models compared with conventional approaches. In a synthetic example involving a gradient array, we show that the conductivity structure obtained from the early time channel data, which are usually discarded, is superior to that obtained from the steady state direct current voltages. This adds a further reason to collect these electromagnetic data.  相似文献   

2.
Very early times in the order of 2–3 μs from the end of the turn‐off ramp for time‐domain electromagnetic systems are crucial for obtaining a detailed resolution of the near‐surface geology in the depth interval 0–20 m. For transient electromagnetic systems working in the off time, an electric current is abruptly turned off in a large transmitter loop causing a secondary electromagnetic field to be generated by the eddy currents induced in the ground. Often, however, there is still a residual primary field generated by remaining slowly decaying currents in the transmitter loop. The decay disturbs or biases the earth response data at the very early times. These biased data must be culled, or some specific processing must be applied in order to compensate or remove the residual primary field. As the bias response can be attributed to decaying currents with its time constantly controlled by the geometry of the transmitter loop, we denote it the ‘Coil Response’. The modelling of a helicopter‐borne time‐domain system by an equivalent electronic circuit shows that the time decay of the coil response remains identical whatever the position of the receiver loop, which is confirmed by field measurements. The modelling also shows that the coil response has a theoretical zero location and positioning the receiver coil at the zero location eliminates the coil response completely. However, spatial variations of the coil response around the zero location are not insignificant and even a few cm deformation of the carrier frame will introduce a small coil response. Here we present an approach for subtracting the coil response from the data by measuring it at high altitudes and then including an extra shift factor into the inversion scheme. The scheme is successfully applied to data from the SkyTEM system and enables the use of very early time gates, as early as 2–3 μs from the end of the ramp, or 5–6 μs from the beginning of the ramp. Applied to a large‐scale airborne electromagnetic survey, the coil response compensation provides airborne electromagnetic methods with a hitherto unseen good resolution of shallow geological layers in the depth interval 0–20 m. This is proved by comparing results from the airborne electromagnetic survey to more than 100 km of Electrical Resistivity Tomography measured with 5 m electrode spacing.  相似文献   

3.
Time‐domain marine controlled source electromagnetic methods have been used successfully for the detection of resistive targets such as hydrocarbons, gas hydrate, or marine groundwater aquifers. As the application of time‐domain marine controlled source electromagnetic methods increases, surveys in areas with a strong seabed topography are inevitable. In these cases, an important question is whether bathymetry information should be included in the interpretation of the measured electromagnetic field or not. Since multi‐dimensional inversion is still not common in time‐domain marine controlled source electromagnetic methods, bathymetry effects on the 1D inversion of single‐offset and multi‐offset joint inversions of time‐domain controlled source electromagnetic methods data are investigated. We firstly used an adaptive finite element algorithm to calculate the time‐domain controlled source electromagnetic methods responses of 2D resistivity models with seafloor topography. Then, 1D inversions are applied on the synthetic data derived from marine resistivity models, including the topography in order to study the possible topography effects on the 1D interpretation. To evaluate the effects of topography with various steepness, the slope angle of the seabed topography is varied in the synthetic modelling studies for deep water (air interaction is absent or very weak) and shallow water (air interaction is dominant), respectively. Several different patterns of measuring configurations are considered, such as the systems adopting nodal receivers and the bottom‐towed system. According to the modelling results for deep water when air interaction is absent, the 2D topography can distort the measured electric field. The distortion of the data increases gradually with the enlarging of the topography's slope angle. In our test, depending on the configuration, the seabed topography does not affect the 1D interpretation significantly if the slope angle is less or around 10°. However, if the slope angle increases to 30° or more, it is possible that significant artificial layers occur in inversion results and lead to a wrong interpretation. In a shallow water environment with seabed topography, where the air interaction dominates, it is possible to uncover the true subsurface resistivity structure if the water depth for the 1D inversion is properly chosen. In our synthetic modelling, this scheme can always present a satisfactory data fit in the 1D inversion if only one offset is used in the inversion process. However, the determination of the optimal water depth for a multi‐offset joint inversion is challenging due to the various air interaction for different offsets.  相似文献   

4.
The time domain electromagnetic method (TDEM) is applied to monitor, to delineate and to map the saltwater intrusion zones in the Mediterranean Plio‐Quaternary aquifer. Forty‐two TDEM soundings were carried out in the coastal plain of Nabeul–Hammamet region (NE Tunisia). TDEM resistivity data were correlated with the existing borehole logging data to assign them to a particular lithology and to provide information about the position of the freshwater–seawater transition zone. The geoelectric sections showing the vertical configuration of seawater intrusion, with the brackish‐salty‐saturated zones, have a resistivity ranging from ~0.1 to 5 Ω?m and are detected at a depth lower than 1.5 m. The salinized zones are located at Nabeul (Sidi Moussa, Sidi El Mahrsi, Al Gasba and Mrazgua) and at Hammamet (Touristic zone of Hammamet north and south, Baraket Essahel) and reached a distance of 4 km from the coastline, indicating a severe state for the aquifer in these zones. These TDEM results are confirmed by the increase of chloride concentration content in the analysed water samples of monitoring wells. Moreover, in the northeastern part, the presence of a saltwater front located far from the coast and along the NW–SE major surface fault can be explained by two hypothesis: (i) this fault seems to provide a conduit for seawater to move readily towards the water wells and (ii) the clay and gypsum infiltration of marine Messinian deposits through the fault plane leads to low resistivities. Finally, it comes out from this study that TDEM survey has successfully depicted salinized zones of this coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents the first controlled‐source electromagnetic survey carried out in the German North Sea with a recently developed seafloor‐towed electrical dipole–dipole system, i.e., HYDRA II. Controlled‐source electromagnetic data are measured, processed, and inverted in the time domain to estimate an electrical resistivity model of the sub‐seafloor. The controlled‐source electromagnetic survey targeted a shallow, phase‐reversed, seismic reflector, which potentially indicates free gas. To compare the resistivity model to reflection seismic data and draw a combined interpretation, we apply a trans‐dimensional Bayesian inversion that estimates model parameters and uncertainties, and samples probabilistically over the number of layers of the resistivity model. The controlled‐source electromagnetic data errors show time‐varying correlations, and we therefore apply a non‐Toeplitz data covariance matrix in the inversion that is estimated from residual analysis. The geological interpretation drawn from controlled‐source electromagnetic inversion results and borehole and reflection seismic data yield resistivities of ~1 Ωm at the seafloor, which are typical for fine‐grained marine deposits, whereas resistivities below ~20 mbsf increase to 2–4 Ωm and can be related to a transition from fine‐grained (Holocene age) to unsorted, coarse‐grained, and compacted glacial sediments (Pleistocene age). Interface depths from controlled‐source electromagnetic inversion generally match the seismic reflector related to the contrast between the different depositional environments. Resistivities decrease again at greater depths to ~1 Ωm with a minimum resistivity at ~300 mbsf where a seismic reflector (that marks a major flooding surface of late Miocene age) correlates with an increased gamma‐ray count, indicating an increased amount of fine‐grained sediments. We suggest that the grain size may have a major impact on the electrical resistivity of the sediment with lower resistivities for fine‐grained sediments. Concerning the phase‐reversed seismic reflector that was targeted by the survey, controlled‐source electromagnetic inversion results yield no indication for free gas below it as resistivities are generally elevated above the reflector. We suggest that the elevated resistivities are caused by an overall decrease in porosity in the glacial sediments and that the seismic reflector could be caused by an impedance contrast at a thin low‐velocity layer. Controlled‐source electromagnetic interface depths near the reflector are quite uncertain and variable. We conclude that the seismic interface cannot be resolved with the controlled‐source electromagnetic data, but the thickness of the corresponding resistive layer follows the trend of the reflector that is inclined towards the west.  相似文献   

6.
Time‐domain electromagnetic data are conveniently inverted by using smoothly varying 1D models with fixed vertical discretization. The vertical smoothness of the obtained models stems from the application of Occam‐type regularization constraints, which are meant to address the ill‐posedness of the problem. An important side effect of such regularization, however, is that horizontal layer boundaries can no longer be accurately reproduced as the model is required to be smooth. This issue can be overcome by inverting for fewer layers with variable thicknesses; nevertheless, to decide on a particular and constant number of layers for the parameterization of a large survey inversion can be equally problematic. Here, we present a focusing regularization technique to obtain the best of both methodologies. The new focusing approach allows for accurate reconstruction of resistivity distributions using a fixed vertical discretization while preserving the capability to reproduce horizontal boundaries. The formulation is flexible and can be coupled with traditional lateral/spatial smoothness constraints in order to resolve interfaces in stratified soils with no additional hypothesis about the number of layers. The method relies on minimizing the number of layers of non‐vanishing resistivity gradient, instead of minimizing the norm of the model variation itself. This approach ensures that the results are consistent with the measured data while favouring, at the same time, the retrieval of horizontal abrupt changes. In addition, the focusing regularization can also be applied in the horizontal direction in order to promote the reconstruction of lateral boundaries such as faults. We present the theoretical framework of our regularization methodology and illustrate its capabilities by means of both synthetic and field data sets. We further demonstrate how the concept has been integrated in our existing spatially constrained inversion formalism and show its application to large‐scale time‐domain electromagnetic data inversions.  相似文献   

7.
Gas hydrates are a potential energy resource, a possible factor in climate change and an exploration geohazard. The University of Toronto has deployed a permanent seafloor time‐domain controlled source electromagnetic (CSEM) system offshore Vancouver Island, within the framework of the NEPTUNE Canada underwater cabled observatory. Hydrates are known to be present in the area and due to their electrically resistive nature can be monitored by 5 permanent electric field receivers. However, two cased boreholes may be drilled near the CSEM site in the near future. To understand any potential distortions of the electric fields due to the metal, we model the marine electromagnetic response of a conductive steel borehole casing. First, we consider the commonly used canonical model consisting of a 100 Ωm, 100 m thick resistive hydrocarbon layer embedded at a depth of 1000 m in a 1 Ωm conductive host medium, with the addition of a typical steel production casing extending from the seafloor to the resistive zone. Results show that in both the frequency and time domains the distortion produced by the casing occurs at smaller transmitter‐receiver offsets than the offsets required to detect the resistive layer. Second, we consider the experimentally determined model of the offshore Vancouver Island hydrate zone, consisting of a 5.5 Ωm, 36 m thick hydrate layer overlying a 0.7 Ωm sedimentary half‐space, with the addition of two borehole casings extending 300 m into the seafloor. In this case, results show that the distortion produced by casings located within a 100 m safety zone of the CSEM system will be measured at 4 of the 5 receivers. We conclude that the boreholes must be positioned at least 200 m away from the CSEM array so as to minimize the effects of the casings.  相似文献   

8.
Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground‐based electromagnetic surveys, electrical resistivity models can be obtained to provide high‐resolution three‐dimensional models of subsurface resistivity variations that can be related to geology and salt concentrations on a regional scale. Several previous studies have calibrated salt water intrusion models with geophysical data, but are typically limited to the use of the inverted electrical resistivity models without considering the measured geophysical data directly. This induces a number of errors related to inconsistent scales between the geophysical and hydrologic models and the applied regularization constraints in the geophysical inversion. To overcome these errors, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion‐State (CHI‐S), in which simulated salt concentrations are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time‐domain electromagnetic (TDEM) dataset was collected. For this location, a simple two‐dimensional cross‐sectional salt water intrusion model was developed, for which we estimated five uniform aquifer properties, incorporating the porosity that was also part of the employed petrophysical relationship. In addition, one geophysical parameter was estimated. The six parameters could be resolved well by fitting more than 300 apparent resistivities that were comprised by the TDEM dataset. Except for three sounding locations, all the TDEM data could be fitted close to a root‐mean‐square error of 1. Possible explanations for the poor fit of these soundings are the assumption of spatial uniformity, fixed boundary conditions and the neglecting of 3D effects in the groundwater model and the TDEM forward responses.  相似文献   

9.
Mud volcanism is commonly observed in Azerbaijan and the surrounding South Caspian Basin. This natural phenomenon is very similar to magmatic volcanoes but differs in one considerable aspect: Magmatic volcanoes are generally the result of ascending molten rock within the Earth's crust, whereas mud volcanoes are characterised by expelling mixtures of water, mud, and gas. The majority of mud volcanoes have been observed on ocean floors or in deep sedimentary basins, such as those found in Azerbaijan. Furthermore, their occurrences in Azerbaijan are generally closely associated with hydrocarbon reservoirs and are therefore of immense economic and geological interest. The broadside long‐offset transient electromagnetic method and the central‐loop transient electromagnetic method were applied to study the inner structure of such mud volcanoes and to determine the depth of a resistive geological formation that is predicted to contain the majority of the hydrocarbon reservoirs in the survey area. One‐dimensional joint inversion of central‐loop and long‐offset transient electromagnetic data was performed using the inversion schemes of Occam and Marquardt. By using the joint inversion models, a subsurface resistivity structure ranging from the surface to a depth of approximately 7 km was determined. Along a profile running perpendicular to the assumed strike direction, lateral resistivity variations could only be determined in the shallow depth range using the transient electromagnetic data. An attempt to resolve further two‐dimensional/three‐dimensional resistivity structures, representing possible mud migration paths at large depths using the long‐offset transient electromagnetic data, failed. Moreover, the joint inversion models led to ambiguous results regarding the depth and resistivity of the hydrocarbon target formation due to poor resolution at great depths (>5 km). Thus, 1D/2D modelling studies were subsequently performed to investigate the influence of the resistive terminating half‐space on the measured long‐offset transient electromagnetic data. The 1D joint inversion models were utilised as starting models for both the 1D and 2D modelling studies. The results tend to show that a resistive terminating half‐space, implying the presence of the target formation, is the favourable geological setting. Furthermore, the 2D modelling study aimed to fit all measured long‐offset transient electromagnetic Ex transients along the profile simultaneously. Consequently, 3125 2D forward calculations were necessary to determine the best‐fit resistivity model. The results are consistent with the 1D inversion, indicating that the data are best described by a resistive terminating half‐space, although the resistivity and depth cannot be determined clearly.  相似文献   

10.
The oil shale exploration program in Jordan is undertaking great activity in the domain of applied geophysical methods to evaluate bitumen‐bearing rock. In the study area, the bituminous marl or oil shale exhibits a rock type dominated by lithofacies layers composed of chalky limestone, marls, clayey marls, and phosphatic marls. The study aims to present enhancements for oil shale seam detection using progressive interpretation from a one‐dimensional inversion to a three‐dimensional modelling and inversion of ground‐based transient electromagnetic data at an area of stressed geological layers. The geophysical survey combined 58 transient electromagnetic sites to produce geoelectrical structures at different depth slices, and cross sections were used to characterise the horizon of the most likely sites for mining oil shale. The results show valuable information on the thickness of the oil shale seam at 3.7 Ωm, which is correlated to the geoelectrical layer between 2‐ and 4 ms transient time delays, and at depths ranging between 85 and 105 m. The 300 m penetrated depth of the transient electromagnetic soundings allows the resolution of the main geological units at narrow resistivity contrast and the distinction of the main geological structures that constrain the detection of the oil shale seam. This geoelectrical layer at different depth slices illustrates a localised oil shale setting and can be spatially correlated with an area bounded by fold and fault systems. Also, three‐dimensional modelling and inversion for synthetic and experimental data are introduced at the faulted area. The results show the limitations of oil shale imaging at a depth exceeding 130 m, which depends on the near‐surface resistivity layer, the low resistivity contrast of the main lithological units, and the degree of geological detail achieved at a suitable model's misfit value.  相似文献   

11.
We present a simple and feasible approach to analyse and identify two‐dimensional effects in central loop transient electromagnetic sounding data and the correspondingly derived quasi two‐dimensional conductivity models. The proposed strategy is particularly useful in minimising interpretation errors. It is based on the calculation of a semi‐synthetic transient electromagnetic tipper at each sounding and for each observational transient time point. The semi‐synthetic transient electromagnetic tipper is derived from the measured vertical component of the induced voltage and the synthetically calculated horizontal component. The approach is computationally inexpensive and involves one two‐dimensional forward calculation of an obtained quasi two‐dimensional conductivity section. Based on a synthetic example, we demonstrate that the transient electromagnetic tipper approach is applicable in identifying which transient data points and which corresponding zones in a derived quasi two‐dimensional subsurface model are affected by two‐dimensional inhomogeneities. The one‐dimensional inversion of such data leads to false models. An application of the semi‐synthetic transient electromagnetic tipper to field data from the Azraq basin in Jordan reveals that, in total, eight of 80 investigated soundings are affected by two‐dimensional structures although the field data can be fitted optimally using one‐dimensional inversion techniques. The largest semi‐synthetic tipper response occurs in a 300 m‐wide region around a strong lateral resistivity contrast. The approach is useful for analysing structural features in derived quasi two‐dimensional sections and for qualitatively investigating how these features affect the transient response. To avoid misinterpretation, these identified zones corresponding to large tipper values are excluded from the interpretation of a quasi two‐dimensional conductivity model. Based on the semi‐synthetic study, we also demonstrate that a quantitative interpretation of the horizontal voltage response (e.g. by inversion) is usually not feasible as it requires the exact sensor position to be known. Although a tipper derived purely from field data is useful as a qualitative tool for identifying two‐dimensional distortion effects, it is only feasible if the sensor setup is sufficiently accurate. Our proposed semi‐synthetic transient electromagnetic tipper approach is particularly feasible as an a posteriori approach if no horizontal components are recorded or if the sensor setup in the field is not sufficiently accurate.  相似文献   

12.
In shallow water the frequency domain controlled source electromagnetic method is subject to airwave saturation that strongly limits the sensitivity to resistive hydrocarbon targets at depth. It has been suggested that time‐domain CSEM may offer an improved sensitivity and resolution of these deep targets in the presence of the airwave. In order to examine and test these claims, this work presents a side‐by‐side investigation of both methods with a main focus on practical considerations, and how these effect the resolution of a hydrocarbon reservoir. Synthetic noisy data for both time‐domain and frequency domain methods are simulated using a realistic frequency dependent noise model and frequency dependent scaling for representative source waveforms. The synthetic data studied here include the frequency domain response from a compact broadband waveform, the time‐domain step‐response from a low‐frequency square wave and the time‐domain impulse response obtained from pseudo‐random binary sequences. These data are used in a systematic resolution study of each method as a function of water‐depth, relative noise and stacking length. The results indicate that the broadband frequency domain data have the best resolution for a given stacking time, whereas the time‐domain data require prohibitively longer stacking times to achieve similar resolution.  相似文献   

13.
A new tracer experiment (referred to as MADE‐5) was conducted at the well‐known Macrodispersion Experiment (MADE) site to investigate the influence of small‐scale mass‐transfer and dispersion processes on well‐to‐well transport. The test was performed under dipole forced‐gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late‐time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field‐experimental data were also used to evaluate two transport models: a stochastic advection‐dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual‐domain single‐rate (DDSR) mass‐transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high‐resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details.  相似文献   

14.
In the process of removing the primary field from fixed‐wing time‐domain airborne EM data, the response is decomposed into two parts, which are referred to here as the time‐domain ‘in‐phase’ and ‘quadrature’ components. The time‐domain in‐phase component is dominated by the primary field, which varies significantly as the transmitter–receiver separation changes. The time‐domain quadrature component comes solely from the secondary response associated with currents induced in the ground and this is the component that has traditionally been used in the interpretation of data from fixed‐wing towed‐bird time‐domain EM systems. In the off‐time, the quadrature response is very similar to the total secondary response. However, there are large differences in the on‐time and even some small differences in the off‐time.One consequence of these differences is that when airborne EM data are to be interpreted using a synthetic mathematical model, the synthetic data calculated should also be the quadrature component. A second consequence relates to the time‐domain in‐phase component which is sometimes used to estimate the receiver‐sensor (bird) position. The bird‐position estimation process assumes there is no secondary field in the in‐phase component. If the ground is resistive, the secondary contained in the in‐phase component is small, so the bird‐position estimate is accurate to about 30 cm, but in highly conductive areas the secondary contribution can be large and the position estimate can be out by as much as 5 m. A third consequence arises for highly conductive bodies, the response of which is predominantly in‐phase. This means that any response from these types of body is lost in the component that has been removed in the primary‐field extraction procedure. However, if the bird position is measured very accurately, the actual free‐space primary field can be estimated. If this is then subtracted from the estimated primary (actually free‐space primary plus secondary in‐phase response), then the residual is the secondary in‐phase response of the ground. Using this methodology, very conductive ore bodies could be detected. However, a sensitivity analysis shows that detection of a large vertically dipping very conductive body at 150 m depth would require that the bird position be measured to an accuracy of about 1.4 cm and the aircraft attitude to within about 0.01°. Such tolerances are very stringent and not easily attainable with current technology.  相似文献   

15.
Electrical and electromagnetic methods are well suited for coastal aquifer studies because of the large contrast in resistivity between fresh water-bearing and salt water-bearing formations. Interpretation models for these aquifers typically contain four layers: a highly resistive unsaturated zone; a surficial fresh water aquifer of intermediate resistivity; an underlying conductive, salt water saturated aquifer; and resistive substratum. Additional layers may be added to allow for variations in lithology within the fresh water and salt water layers. Two methods are evaluated: direct current resistivity and time domain electromagnetic soundings. Use of each method alone produces nonunique solutions for resistivities and/or thicknesses of the different layers. We show that joint inversion of vertical electric and time domain electromagnetic soundings produces a more tightly constrained interpretation model at three test sites than is produced by inversion methods applied to each data set independently.  相似文献   

16.
17.
The accurate estimation of sub‐seafloor resistivity features from marine controlled source electromagnetic data using inverse modelling is hindered due to the limitations of the inversion routines. The most commonly used one‐dimensional inversion techniques for resolving subsurface resistivity structures are gradient‐based methods, namely Occam and Marquardt. The first approach relies on the smoothness of the model and is recommended when there are no sharp resistivity boundaries. The Marquardt routine is relevant for many electromagnetic applications with sharp resistivity contrasts but subject to the appropriate choice of a starting model. In this paper, we explore the ability of different 1D inversion schemes to derive sub‐seafloor resistivity structures from time domain marine controlled source electromagnetic data measured along an 8‐km‐long profile in the German North Sea. Seismic reflection data reveal a dipping shallow amplitude anomaly that was the target of the controleld source electromagnetic survey. We tested four inversion schemes to find suitable starting models for the final Marquardt inversion. In this respect, as a first scenario, Occam inversion results are considered a starting model for the subsequent Marquardt inversion (Occam–Marquardt). As a second scenario, we employ a global method called Differential Evolution Adaptive Metropolis and sequentially incorporate it with Marquardt inversion. The third approach corresponds to Marquardt inversion introducing lateral constraints. Finally, we include the lateral constraints in Differential Evolution Adaptive Metropolis optimization, and the results are sequentially utilized by Marquardt inversion. Occam–Marquardt may provide accurate estimation of the subsurface features, but it is dependent on the appropriate conversion of different multi‐layered Occam model to an acceptable starting model for Marquardt inversion, which is not straightforward. Employing parameter spaces, the Differential Evolution Adaptive Metropolis approach can be pertinent to determine Marquardt a priori information; nevertheless, the uncertainties in Differential Evolution Adaptive Metropolis optimization will introduce some inaccuracies in Marquardt inversion results. Laterally constrained Marquardt may be promising to resolve sub‐seafloor features, but it is not stable if there are significant lateral changes of the sub‐seafloor structure due to the dependence of the method to the starting model. Including the lateral constraints in Differential Evolution Adaptive Metropolis approach allows for faster convergence of the routine with consistent results, furnishing more accurate estimation of a priori models for the subsequent Marquardt inversion.  相似文献   

18.
We present results of synthetic time‐lapse and real repeatability multi‐transient electromagnetic surveys over the North Sea Harding field. Using Archie's law to convert porosity and fluid saturation to resistivity we created 3D isotropic models of the reservoir resistivity at different stages of production from the initial state in 1996 through to complete hydrocarbon production by 2016 and, for each stage, we simulated an east‐west transient electromagnetic survey line across Harding. Unconstrained 1D full‐waveform Occam inversions of these synthetic data show that Harding should be detectable and its lateral extent reasonably well‐defined. Resistivity changes caused by hydrocarbon production from initial pre‐production state to production of the oil rim in 2011 are discernible as are significant changes from 2011–2016 during the modelled gas blowdown phase. The 2D repeatability surveys of 2007 and 2008 tied two wells: one on and the other off the structure. Between the two surveys the segment of the field under investigation produced 3.9 million barrels of oil – not enough to generate an observable time‐lapse electromagnetic anomaly with a signal‐to‐noise ratio of 40 dB. Processing of the 2007 and 2008 data included deconvolution for the measured source current and removal of spatially‐correlated noise, which increased the signal‐to‐noise ratio of the recovered impulse responses by about 20 dB and resulted in a normalized root‐mean‐square difference of 3.9% between the data sets. 1D full‐waveform Occam inversions of the real data showed that Harding was detectable and its lateral extent was also reasonably well‐defined. The results indicate that the multi‐transient electromagnetic method is suitable for exploration, appraisal and monitoring hydrocarbon production.  相似文献   

19.
Artificial neural networks were used to implement an automatic inversion of frequency‐domain airborne electromagnetic (AEM) data that do not require a priori information about the survey area. Two classes of model, i.e. homogeneous half‐space models and horizontally layered half‐space models with two layers, are used in this 1D inversion, and for each data point the selection of the class of 1D model is performed prior to the inversion, also using an artificial neural network. The proposed inversion method was tested in a survey area situated in Austria, northwest of Vienna in the Bohemian Massif. The results of the inversion were compared with the geological setting, logging results, and seismic and gravimetric measurements. This comparison shows a good correlation between the AEM models and the known geological and geophysical data.  相似文献   

20.
Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium‐large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time‐consuming. Alternatively, frequency‐domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM‐421 and EM4Soil inversion software package are used to develop a quasi two‐ (2D) and quasi three‐dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium‐large scale drivers including local wave climate and morphology along this wave‐dominated beach. Further research is required to elucidate the influence of spring‐neap tidal cycles, contrasting beach morphological states and sea level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号