首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Planktonic foraminifer distributions in seventeen stratigraphic sections of Upper Cretaceous hemipelagic and pelagic sequences of northern Bey Da?lar? Autochthon (western Taurides) yield six biozones such as, Dicarinella concavata Interval Zone, Dicarinella asymetrica Range Zone, Radotruncana calcarata Range Zone, Globotruncana falsostuarti Partial Range Zone, Gansserina gansseri Interval Zone, and Abathomphalus mayaroensis Concurrent Range Zone. Two of the zones, Dicarinella concavata Zone and Dicarinella asymetrica Zone, are identified in the massive hemipelagic limestones of the Bey Da?lar? Formation, of Coniacian-Santonian age. They are characterized by scarce planktonic foraminifera and abundant calcisphaerulids. The other four biozones are determined from the cherty pelagic limestones of the Akda? Formation and indicate a late Campanian-late Maastrichtian time interval. The planktonic foraminifera observed in these four biozones are diverse, complex morphotypes (K-selection), suggesting open oceans. The assemblage of the Abathomphalus mayaroensis Zone shows that the latest Maastrichtian record is absent throughout the northern part of the autochthon. Two main sedimentary hiatuses are recognized within the Upper Cretaceous pelagic sequence. Early to middle Campanian and latest Maastrichtian-middle Paleocene planktonic foraminifera are absent in all measured stratigraphic sections. Hiatus durations differ between sections as a result of diachronism of onset of the hemipelagic and pelagic deposition and the post-Santonian and post-Maastrichtian erosional phases. Drowning event and the early-middle Campanian and latest Maastrichtian-middle Paleocene hiatuses in the pelagic sequence are attributed to regional tectonics during the Late Cretaceous.  相似文献   

2.
The Gurpi section in western Shiraz, faulted Zagros range of southwestern Iran, contains one of the most complete Early Santonian to Late Maastrichtian sequences. The lack of a good fundamental paleontological study is a strong motivation for investigating calcareous nannofossils in southwestern Iran. The Gurpi Formation is mainly made up of grey shale. As a result of this study, 23 genera and 47 species of nannofossils have been identified for the first time. This confirms the existence of biozones CC14–CC26, which suggests the age of Early Santonian to Late Maastrichtian. All Early Santonian to Late Maastrichtian calcareous nannofossil biozones from CC14 (equivalent to the Micula decussate Zone) to CC26 (equivalent to the Nephrolithus frequens Zone) are discussed. Additionally, the zonal subdivision of this section based on calcareous nannofossils, is correlated with planktonic foraminiferal zones (Dicarinella asymetrica Zone to Abathomphalus mayaroensis Zone). We can also learn about the predominant conditions of the studied sedimentary basin that was in fact a part of the Neotethys basin with the existence of index species of calcareous nannofossils indicating a warm climate and high depths of the basin in low latitudes.  相似文献   

3.
The palaeogeographic setting of the studied Ain Medheker section represents an Early Campanian to Early Maastrichtian moderately deep carbonate shelf to distal ramp position with high rates of hemipelagic carbonate production, periodically triggered by mass-flow processes. Syndepositional extensional tectonic processes are confirmed to the Early Campanian. Planktonic foraminifera identified in thin sections and calcareous nannofossils allow the identification of the following biozones: Globotruncanita elevata, Contusotruncana plummerae (replacing former Globotruncana ventricosa Zone), Radotruncana calcarata, Globotruncana falsostuarti, and Gansserina gansseri. The following stable C-isotope events were identified: the Santonian/Campanian boundary Event, the Mid-Campanian Event, and the Late Campanian Event. Together with further four minor isotopic events, they allow for correlation between the western and eastern realms of Tunisia. Frequently occurring turbidites were studied in detail and discussed in comparison with contourites.  相似文献   

4.
西藏南部晚白垩世-古新世大洋红层的分布与时代   总被引:11,自引:2,他引:9  
特提斯—喜马拉雅北沉积亚带沉积有一套大洋红色岩层,由东往西在羊卓雍错、江孜、萨迦、萨嘎、札达一带断续出露,并与宗卓组上部地层相关。这套海相红层,根据岩性特征和浮游有孔虫可以直接进行区域对比。其时代在江孜地区为Santonian晚期—Campanian中期,包括Dicarinella asymetrica, Globotruncanitaelevata,Globotruncana ventricosa 和Globotruncanita calcarata 浮游有孔虫带;在萨迦地区限于Campanian期,鉴定有Globotruncanita elevata, Globotruncana ventricosa 和G. linneiana等具时代意义的浮游有孔虫;在萨嘎—吉隆地区为Maastrichtian期,识别出Gansserina gansseri 和Abthomphalus mayaroensis 浮游有孔虫带;在札达地区为古新世早期,以Glibigerina eugubina G. fringa化石带为代表。海相红层在西藏南部由东往西其时代逐渐变新,主要沉积时代分布在Santonian晚期—古新世早期。其总体时间跨度较大,大约长达20Ma。而事件在各个地点的延续时间有限,基本在3~8 Ma之内。根据对海相红层和沉积基质中浮游有孔虫的研究,该沉积带宗卓组的顶界时代已超出白垩纪,进入了古新世。  相似文献   

5.
Nineteen benthonic and planktonic foraminiferal zones and their subzones have been recognized in the Tethyan cretaceous successions along the four sections analyzed in the northwestern Zagros fold–thrust belt within the preforeland–foreland basin. A detailed micropaleontological investigation revealed eight benthonic zones from the Qamchuqa Formation (Barremian to Lower Early Cenomanian) including: the Choffatella decipiens interval zone, C. decipiens/Palorbitolina lenticularis total range zone, C. decipiens/Salpingoporella dinarica interval zone, Mesorbitolina texana total range zone, Mesorbitolina subconcava total range zone, Orbitolina qatarica total range zone, Orbitolina sefini total range zone, and the Orbitolina concava partial range zone. The Rotalipora cushmani total range zone was recorded in the Dokan Formation that overlies the Qamchuqa Formation of the Late Cenomanian age. The Gulneri Formation is represented only by the Whitnella archaeocretacea partial range zone/Heterohelix moremani total range subzone and indicates the Late Cenomanian/Early Turonian age. Six planktonic foraminiferal zones were recorded from the Kometan Formation, indicating the Late Cenomanian to Early Campanian age, and are represented by the R. cushmani/H. moremani subzone, Helvetotruncana helvetica total range zone, Marginotruncana sigali partial range zone, Dicarinella primitiva interval range zone, Dicarinella concavata interval zone, Dicarinella assymetrica total range zone, and Globotruncanita elevata partial range zone. Two planktonic foraminferal zones were recorded also and these are related to the Globotruncana (fornicata, stuartiformis, elevata, and ventricosa) assemblage zone, Globotruncana calcarata total range subzone, from the Shiranish Formation, Lower Late Campanian, while the second zone is nominated as the Globotruncana (arca, tricarinata, esnehensis, and bahijae) assemblage zone, Globotruncana gansseri interval subzone, and Globotruncana contusa total range zone of the Late Campanian to basal middle Maastrichtian age. The last zone is related to the Abathomphalus mayaroensis partial range zone (of Late Maastrichtian age) and occasionally intercalated with the OrbitoidesLoftusia benthic zones. An important hiatus, between the Qamchuqa and Kometan formations was proved and manifests Pre-Aruma unconformity, and is occasionally associated with the global Cenomanian–Turonian Oceanic Anoxic Euxinic Event, while the Maastrichtian red bed of the Shiranish Formations mostly points to Tethyan upper Cretaceous Oceanic Red Bed.  相似文献   

6.
《Cretaceous Research》1995,16(5):539-558
The Cretaceous sedimentary successions of the Ionian Zone, Hellenides, western Greece, are composed of pelagic limestones intercalated with cherty layers. The micritic and biomicritic beds with abundant chert nodules and cherty horizons, which were deposited during late Tithonian to early Santonian times, belong to the Vigla Limestone Formation, while the sediments deposited during the late Santonian to Maastrichtian, formed clastic limestone beds in which chert nodules also occur sparsely.In the Cretaceous beds calpionellids, planktonic and benthonic foraminifera characteristics of the Tethyan realm, and radiolaria have been recorded. The calpionellids, together with radiolaria, colonized the entire basin during the Berriasian to early Valanginian, the latter becoming dominant during the Hauterivian to early Albian as a result of anoxia. Planktonic foraminifera first appeared in the basin during the late Albian and persisted until the Maastrichtian. The numbers decreased, however, during the Cenomanian-early Turonian interval, when radiolaria increased owing to anoxic conditions, and during the Campanian-Maastrichtian interval because the basin became shallow. During this interval larger benthonic foraminifera colonized the basin. Zonal markers have been recognized in calpionellid and planktonic foraminiferal assemblages on the basis of which two calpionellid zones are distinguished, viz. the Calpionella alpina and Calpionellopsis Zones (Berriasian-early Valanginian) along with seven planktonic foraminiferal zones, viz. the Rotalipora ticinensis, Rotalipora appenninica (late Albian), Rotalipora brotzeni (early Cenomanian), Helvetoglobotruncana helvetica (early to middle Turonian), Marginotruncana sigali(late Turonian to early Coniacian), Dicarinella concavata (late Coniacian to early Santonian) and Dicarinella asymetrica (late early-late Santonian) Zones.The anoxic conditions that prevailed in the Ionian basin during the Barremian-early Albian, Cenomanian-early Turonian and Coniacian-Santonian intervals probably arose as a result of (a) the accumulation of large amounts of organic matter because the palaeotopography of the basin periodically hindered the circulation of water from the ocean and (b) the oxygen content of the intruding oceanic waters was low.  相似文献   

7.
The first data on the distribution of calcareous nannofossils in the Behbehan section, the Kuh-e-Rish, are considered. According to the distribution of nannofossils, the Upper Cretaceous deposits of the section are subdivided into nine biostratigraphic zones. CC17 (Calculites obscurus zone) indicate the Late Santonian. Biozones CC18 (Aspidolithus parcus zone), CC19 (Calculites ovalis zone), CC20 (Ceratolithoides aculeus zone), CC21 (Quadrum sissinghii zone), and CC22 (Quadrum trifidum zone) represent the Campanian. Biozone CC23 (Tranolithus phacelosus zone) indicate the Late Campanian–Early Maastrichtian. Biozones CC24 (Reinhardtites levis zone) and CC25 (Arkhangelskiella cymbiformis zone) suggest the Middle and Late Maastrichtian, respectively. In the late Late Maastrichtian, due to decreasing in water depth at the study area, Nephrolithus frequens zone (CC26) defined in Tethysian domain was not recognized. The boundary between Gurpi–Pabdeh Formations represented a non-depositional period from the late Late Maastrichtian to the end of Early Paleocene. Also, it seems that predominant conditions of the sedimentary environment of Neotethys basin with the presence of index species calcareous nannofossils specified, which itself indicates that the warm climate and high depth of the basin in Late Santonian to Late Maastrichtian, in low latitudes has been prevalent.  相似文献   

8.
The stratigraphy, sedimentology and syn-depositional tectonic events (SdTEs) of the Upper Cretaceous/Paleogene (K–P) succession at four localities in north Eastern Desert (NED) of Egypt have been studied. These localities are distributed from south-southwest to north-northeast at Gebel Millaha, at North Wadi Qena, at Wadi El Dakhal, and at Saint Paul Monastery. Lithostratigraphically, four rock units have been recorded: Sudr Formation (Campanian–Maastrichtian); Dakhla Formation (Danian–Selandian); Tarawan Formation (Selandian–Thanetian) and Esna Formation (Thanetian–Ypresian). These rock units are not completely represented all over the study area because some of them are absent at certain sites and others have variable thicknesses. Biostratigrapgically, 18 planktonic foraminiferal zones have been recorded. These are in stratigraphic order: Globotruncana ventricosa Zone (Campanian); Gansserina gansseri, Contusotruncana contusa, Recimguembelina fructicosa, Pseudohastigerina hariaensis, Pseudohastigerina palpebra and Plummerita hantkenenoides zones (Maastrichtian); Praemurica incostans, Praemurica uncinata, Morozovella angulata and Praemurica carinata/Igorina albeari zones (Danian); Igorina albeari, Globanomanlina pseudomenradii/Parasubbotina variospira, Acarinina subsphaerica, Acarinina soldadoensis/Globanomanlina pseudomenardii and Morozovella velascoensis zones (Selandian/Thantian); and Acarinina sibaiyaensis, Pseudohastigerina wilcoxensis/Morozovella velascoensis zones (earliest Ypresian). Sedimentologically, four sedimentary facies belts forming southwest gently-dipping slope to basin transect have been detected. They include tidal flats, outer shelf, slumped continental slope and open marine hemipelagic facies. This transect can be subdivided into a stable basin plain plus outer shelf in the extreme southwestern parts; and an unstable slope shelf platform in the northeastern parts. The unstable slope shelf platform is characterized by open marine hemipelagic, fine-grained limestones and fine siliciclastic shales (Sudr, Dakhla, Tarawan and Esna formations). The northeastern parts are marked by little contents of planktonic foraminifera and dolomitized, slumped carbonates, intercalated with basinal facies. Tectonically, four remarkable syn-depositional tectonic events (SdTEs) controlled the evolution of the studied succession. These events took place strongly within the Campanian–Ypresian time interval and were still active till Late Eocene. These events took place at: the Santonian/Campanian (S/C) boundary; the Campanian/Maastrichtian (C/M) boundary; the Cretaceous/Paleogene (K/P) boundary; and the Middle Paleocene–Early Eocene interval. These tectonic events are four pronounced phases in the tectonic history of the Syrian Arc System (SAS), the collision of the Afro-Arabian and Eurasian plates as well as the closure of the Tethys Sea.  相似文献   

9.
Data on the distribution of radiolarians and planktonic and benthic foraminifers are obtained for the first time from the Alan-Kyr Section (Coniacian–Campanian), in the central regions of the Crimean Mountains. Radiolarian biostrata, previously established from Ak-Kaya Mountain (central regions of the Crimean Mountains) were traced: Alievium praegallowayi–Crucella plana (upper Coniacian–lower Santonian), Alievium gallowayi–Crucella espartoensis (upper Santonian without the topmost part), and Dictyocephalus (Dictyocryphalus) (?) legumen–Spongosaturninus parvulus (upper part of the upper Santonian). Radiolarians from the Santonian–Campanian boundary beds of the Crimean Mountains are studied for the first time, and Prunobrachium sp. ex gr. crassum–Diacanthocapsa acanthica Beds (uppermost Santonian–lower Campanian) are recognized. Bolivinoides strigillatus Beds (upper Santonian) and Stensioeina pommerana–Anomalinoides (?) insignis Beds (upper part of the upper Santonian–lower part of the lower Campanian) are recognized. Eouvigerina aspera denticulocarinata Beds (middle and upper parts of the lower Campanian) and Angulogavelinella gracilis Beds (upper part of the upper Campanian are recognized on the basis of benthic foraminifers. These beds correspond to the synchronous biostrata of the East European Platform and Mangyshlak. Marginotruncana coronata-Concavatotruncana concavata Beds (Coniacian–upper Santonian), Globotruncanita elevata Beds (terminal Santonian), and Globotruncana arca Beds (lower Campanian) are recognized on the basis of planktonic foraminifers. Radiolarian and planktonic and benthic foraminiferal data agree with one another. The position of the Santonian–Campanian boundary in the Alan-Kyr Section, which is located stratigraphically above the levels of the latest occurrence of Concavatotruncana concavata and representatives of the genus Marginotruncana, is refined, i.e., at the level of the first appearance of Globotruncana arca. A gap in the Middle Campanian–lower part of the upper Campanian is established on the basis of planktonic and benthic foraminifers. The Santonian–Campanian beds of the Alan-Kyr Section, on the basis of planktonic foraminifers and radiolarians, positively correlate with synchronous beds of the Crimean-Caucasian region, and beyond. Benthic foraminifers suggest a connection with the basins of the East European Platform.  相似文献   

10.
For the first time, the calcareous nannofossils of the chalky limestone of upper Abderaz Formation and lower part of Abtalkh Formation have been studied. In this study, 83 nannoplanktonic species of 45 genera were identified and presented. A biostratigraphic study of calcareous nannofossils from this section has allowed the recognition of five calcareous nannofossil biozones of Sissingh (Geol Mijnbouw 56:37–65, 1977) CC17–CC21. On the obtained calcareous nannofossils, the age of this section is Late Santonian/Early Campanian–Early Late Campanian.  相似文献   

11.
In biostratigraphic studies of the Surgah formation in the Kuh-e-Surgah section, 145 samples were collected. The thickness of the Surgah formation is about 175 m, and it consists mainly of limestone and shale. The lower and upper boundaries of the Surgah formation are Sarvak and Ilam formations, respectively, and they are conformable with sharp lithology. Seventeen species which belong to six genera of planktonic foraminifera and four biozones have been identified in this study. Based on foraminifera assemblages and biozone determinations, the age of the Surgah formation is Late Turonian to Early Late Santonian. This section is correlated with the Tang-e-Gerab section.  相似文献   

12.
The exposed Cretaceous shelf succession of the Cauvery Basin, southeastern India, has provided a world-class record of mid and Late Cretaceous invertebrates, documented in a substantial literature. However, the lithostratigraphy of the succession has been little studied and previously subject to a range of nomenclature. It is revised here, on the basis of intensive regional mapping, to stabilize the definition and nomenclature of lithostratigraphic units. The Uttattur Group is restricted in outcrop to the Ariyalur district and divided into the Arogypapurum Formation (new; Albian), Dalmiapuram Formation (late Albian), and Karai Formation (late Albian–early Turonian) for which the Odiyam and Kunnam Members are recognized. The Trichinopoly Group follows unconformably and is also restricted in outcrop to the Ariyalur district. It is divided into the Kulakkalnattam Formation (Turonian) and Anaipadi Formation (late Turonian–Coniacian). The Ariyalur Group is more widely distributed. In the Ariyalur district, the Sillikkudi Formation (Santonian–Campanian) and its Kilpaluvari Member, the Kallakurichchi Formation (early Maastrichtian), the Kallamedu Formation (mid and Late Maastrichtian) and the Niniyur Formation (Danian) are recognized. The sequence in the Vriddhachalam area consists of the Parur and Patti formations (Campanian), Mattur Formation (late Campanian–earliest Maastrichtian) and Aladi Formation (Maastrichtian). For the Pondicherry district, the Valudavur and Mettuveli formations (Maastrichtian) and Kasur and Manaveli formations (Paleocene) comprise the succession. The interpreted depositional environments for the succession in the Ariyalur district indicate four eustatic cycles in the mid and Late Cretaceous and earliest Tertiary: late Albian–early Turonian, late Turonian–Santonian, Campanian, Maastrichtian, and Paleocene. Overall the Cauvery Basin sequence is arenaceous and relatively labile in terms of framework grain composition, and contrasts with the pelitic assemblage developed on the west Australian margin from which eastern India separated in the Early Cretaceous (Valanginian). The difference is ascribed to palaeoclimate as controlled by palaeolatitude. For the Late Cretaceous, the Cauvery Basin drifted north on the Indian plate from 40 to 30°S. This zone is inferred to constitute Southern Hemisphere horse latitudes for Late Cretaceous time, characterized by an arid climate, physical weathering and the production of labile sands. By contrast, the west Australian margin of matching tectonic history remained in a high palaeolatitude (>40°S) throughout the Late Cretaceous, experiencing a pluvial climate, the dominance of chemical weathering and the production of clays.  相似文献   

13.
In the northwestern circum-Pacific, two main trends in Late Cretaceous temperatures can be recognized. (1) In general, a recurrent warming trend is thought to have begun in the Turonian–Campanian, reaching temperature maxima in the early Late Santonian and early Late Campanian, and temperature minima in the earliest Santonian and perhaps early Campanian. (2) During the Maastrichtian, temperatures dropped sharply, with only a slight warming in the early Late Maastrichtian. The existence of a thermal maximum at the Coniacian–Santonian transition has previously been expected, but is not confirmed by new isotopic results.  相似文献   

14.
One hundred and thirty nine samples have been studied from the Late Campanian–Early Maastrichtian of three deep wells drilled in Jiza’-Qamar Basin, Eastern Yemen to determine the calcareous nannofossil zones and the age of the sediments. Forty-seven calcareous nannofossil species were identified and four biozones were determined in the present study (CC21–CC24). These biozones are assigned to the Late Campanian–Early Maastrichtian ages. Most of the studied species in this work refer to tropical–subtropical environment. The Campanian–Maastrichtian Boundary was determined in Al-Fatk well based on the last occurrence of Eiffelithus eximus and the last occurrences of Uniplanarius sissinghii and Uniplanarius trifidus.  相似文献   

15.
Oligocene and Lower Miocene sediments from High Folded Zone of Iraqi Zagros have been studied paleontologically at south of Sulaimaniyah, Kurdistan Region, NE Iraq. The identified fauna are consisted of (25) genera and species of benthonic and (16) species of planktonic foraminifera. The fauna comprises relatively abundant foraminiferal assemblages of moderate diversity. Based on the stratigraphic distribution of these species, two biozones have been recognized which are NummulitesRotalia and Globoquadrina dehiscens zones. These biozones indicate that the studied sections of Basara and Khewata are of Late Oligocene–Early Miocene age. Based on the microfossils, it has been found that the age of sediments is equivalent to or represents Anah and Serikagni Formations. Some previous studies described Oligocene rocks (Kirkuk Group) as interior sag basin. In the present study, the occurrence of the group inside High Folded Zone and its rich fauna content are used for the discussion of the sag basin versus normal marine water.  相似文献   

16.
New data on the radiolarians and foraminifers (planktonic and benthic) from the lower part of Struganik limestones (Bre??e Section, Western Serbia) are presented. The Afens perapediensis Zone of a new detailed scale based on radiolarians for the Tethyan supra-region was traced for the first time. This allowed classification of the studied deposits to a narrow stratigraphic interval, that is, the upper Santonian. The age of the studied sediments is determined in the Santonian for planktonic foraminifera because of the joint presence of abundant Marginotruncana (extinct in the latest Santonian) and Globotruncana linneiana (d’Orbigny) (which appeared in the early Santonian). The radiolarian and planktonic and benthic foraminifera data agree with one another.  相似文献   

17.
Schmidsippl剖面位于奥地利北钙质阿尔卑斯构造带内Gosau群典型地区。剖面出露的Bibereck组记录了一个海侵和沉积区海水变深过程。Bibereck 组之下是Santonian 晚期Hochmoos 组(Sandkalkbank段),主要为砂质、粉砂质灰色生物扰动构造发育的泥灰岩,含少量双壳类碎片。Hochmoos组之上为灰色泥灰岩和泥灰质灰岩。Bibereck组下部显示变深到近滨-远滨过渡带区域;向上,泥灰岩指示细粒泥质远滨沉积,水深大致50~150 m;之上出现浮游有孔虫含量超过90%的泥灰质灰岩,代表着半深海沉积环境。生物地层数据显示采样层位整体位于浮游有孔虫asymetrica elevata 带,由Globotruncanita elevata 和Dicarinellaasymetrica 的共同出现来界定。钙质超微化石Calculites obscurus、Lucianorhabdus cayeuxii、Arkhangelsk iella cymbiformis 的出现指示属于钙质超微化石带CC17b/UC12,相当于Campanian初期。地层深度剖面上,Ca/Al比值和Catot含量显示海水来源的Ca在0~5 m地层内几近于零,向上快速增加;(Fe/Al)/碳酸盐显示两个峰值,代表更还原条件,分别位于4 m和10 m位置;K/Al比值的下降被解释为更潮湿气候条件;剖面上部Ba含量的增加显示向更低原始生产条件的变化;陆源矿物在剖面7 m以下保持稳定,之上一直到剖面顶部不断下降。生物地层  相似文献   

18.
In the Korkuteli area of the western Taurides, Upper Cretaceous sequences consist of the neritic and hemipelagic Beydaglari Formation and the pelagic Akdag Formation. These formations show important facies variations and stratigraphic gaps. The Beydaglari Formation, ranging in age from Cenomanian to Santonian, is approximately 600 m thick, and is composed mainly of platform-type neritic carbonates. Five microfacies indicating tidal-flat, subtidal (lagoonal), reef, and forereef subenvironments are distinguished in the neritic carbonates of the formation. Benthic foraminifera and rudists are the main biological components that provide information about the environment and age of the unit. In addition, cryptalgal lamination also is recognized as an important tool in determining environment. The uppermost part of the Beydaglari Formation is composed of hemipelagic carbonates (a sixth microfacies), which were deposited under basinal conditions. The Akdag Formation consists of planktonic foraminifera-bearing pelagic carbonates, suggesting a Campanian-Maastrichtian age and deposition as a basinal facies. The formation disconformably overlies the Beydaglari Formation along an erosional surface.

Eocene transgressive pelagic clayey carbonates of the Ulucak Formation unconformably overlie the Upper Cretaceous carbonate sequences. Detailed investigations have shown that, at least in the studied part of the autochthonous unit, the platform began to drown during the Santonian and that a true basinal environment persisted from the Campanian to the Maastrichtian. Two erosional phases are recorded; one occurred after the Santonian and is characterized by a prominent erosional surface, and the other is responsible for the post-Cretaceous regression.  相似文献   

19.
Abstract

Biostratigraphical data using larger foraminifera and planktonic foraminifera permitted us to establish the correlation between shallow platform sediments rich in larger foraminifera (Montsec and Serres Marginals thrust sheets) and deeper ones containing planktonic foraminifera (Boixols thrust sheet).

Consequently, the Santa Fe limestones containing Ovalveolina-Praealveolinaassemblage represent the Cenomanian. Early Turonian ( ‘IT~ archaeocretacea and P. helvetica zones) exist in both, Montsec and Boixols thrust sheets and it is constituted by Pithonella limestones. Late Turonian (M. schneegansi zone) is only present in Boixols thrust sheet (Reguard Fm.), the Montsec thrust sheet having an erosive hiatus.

Late Coniacian-Early Santonian (D. Concavata zone) is represented in the Montsec thrust sheet (Cova Limestones) and in the eastern part of the Boixols thrust sheet (St. Corneli Fm.) by two differents facies giving two different microfaunal assemblages; the firts one, characterized by Ophtalmidiidae s.l indicate a restricted lagoonal environment while the second one, characterized by diverses species of complex agglutinated, Fabulariidae, Meandropsinidae and Rotaliidae, represents an open shallow platform. In the Boixols thrust sheet (Anseroles Fm.) dominate the planktonic foraminifera and small benthic.

In the late Santonian (D. asyrnetrica zone) the sea reached as far as Serres Marginales thrust sheet where sediments (Tragó de Noguera unit) are terrigenous and deposited in a very shallow platform. In the Montsec thrust sheet (Montsec marls) the larger foraminifera indicate a platform deeper than that of the Serres Marginals thrust sheet. In the Boixols thrust sheet the sediments are deposited in an outer platform (Herbasavina Fm.) or turbiditic basin (Mascarell Mb.).

During Campanian times the transgresion reaches the maximum. In the Serres Marginals sediments are deposited in a restricted shallow environment rich in Meandropsinidae (Serres Limestones). In the Montsec thrust sheet they are deposited in a platform with patch reefs and shoals (Terradets limestones) and in the Boixols one in an outer platform, talus and/or basin.

During Early Maastrichtian times (C. falsostuarti zone) terrigenous materials arrived in the basin, the rate of sedimentation increased outstripping the subsidence rate and the retreat of the sea to the north. Late Maastrichtian (C. gansseri zone) is only present in the Boixols thrust sheet.  相似文献   

20.
The first detailed biostratigraphic analyses of the Coniacian-middle Campanian shallow-marine carbonate successions exposed in the Mitla Pass, west central Sinai, Egypt have revealed the stratigraphic distribution of diverse calcareous nannofossil and planktonic foraminiferal species. Thirty-six calcareous nannofossils and thirty-two planktonic foraminifera are identified, indicating a Coniacian to middle Campanian age and four Tethyan planktonic foraminiferal and five calcareous nannofossil zones. A comparison of these bioevents from different palaeolatitudes shows considerable variation in age.Three sequence boundaries coincident with the Turonian/Coniacian, Coniacian/Santonian and Santonian/Campanian stage boundaries are recognized. A fourth sequence boundary is marked by a major upper Campanian to early Ypresian (early Eocene) unconformity. These sequence boundaries are primarily related to regional tectonism associated with the Syrian Arc Fold System and secondarily to eustatic sea-level fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号