首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
建立了一种利用193 nm ArF准分子激光剥蚀-等离子体质谱法直接测定岩石熔融玻璃中Nb和Ta的分析方法。采用常规的碱熔法熔融样品,以29Si为内标、玻璃标准参考物质NIST SRM612为外标进行测定,方法的检出限分别为Nb0.003μg/g和Ta0.006μg/g(n=10)。分析4个不同的地质标准参考物质结果表明,Nb和Ta测定结果的相对误差(RE)和精密度(RSD,n=11)均低于10%。  相似文献   

2.
本研究建立了适用于玄武岩、纯橄岩和页岩样品的阳离子树脂铬元素化学分离方法, 并采用双稀释剂校正化学分离和质谱仪测量过程中的质量分馏。在化学分离过程中铬有3个淋洗峰, 反映了盐酸体系中铬至少具有3种络合物。页岩样品中Al、Ti含量较高, 在淋洗过程中会有过载现象。采用了SRM 979对50Cr-54Cr双稀释剂进行了标定, 双稀释剂的铬同位素组成为50Cr/52Cr=41.66, 54Cr/52Cr=22.28。铬元素标准NIST 3112a相对于SRM 979的δ53Cr= –0.063±0.05‰(2SD, N=22)。玄武岩、纯橄岩等标准物质的结果与已发表数据在误差范围内一致, 精度达到国际同类实验室平均水平。  相似文献   

3.
石笋样品的微量元素含量及Mg/Ca、Sr/Ca比值为高分辨的古气候重建提供重要指标。针对现有溶液分析技术易混合多个石笋微层、误差大的缺点,本文利用激光剥蚀电感耦合等离子体质谱技术(LA-ICP-MS)原位线扫描和点剥蚀方式对比分析了石笋生长轴方向的Mg/Ca和Sr/Ca空间分布趋势,研究表明二者均展现出显著的周期性变化特征,且周期性变化一致,其中40 μm束斑线扫描更具有稳定性强、分辨率高、快速简便的优点。通过探讨碳酸盐标准样品MASC-3与玻璃标准样品NIST 610、NIST 612、KL2G、ATHO-G的相对灵敏度系数关系和元素分馏行为,确定基体效应是造成相对灵敏度系数变化的主要原因。同时建立了以MASC-3、NIST 610和NIST 612多外标结合内标Ca归一定量分析石笋中45种元素方法,针对石笋碳酸盐样品,将主量元素Ca、Mg变形为碳酸盐形式,与其他元素加和归一,不仅改变了国内外研究中需要预先采用其他分析技术来测定内标元素含量的计算方法,而且有效地避免了C元素无法准确检测的问题,能够实现与Ca内标法校正结果的吻合。  相似文献   

4.
激光能量密度对LA-ICP-MS分析数据质量的影响研究   总被引:3,自引:2,他引:1  
LA-ICP-MS分析矿物元素含量时激光能量密度会影响样品的剥蚀速率,从而影响测试过程的信号强度。激光能量密度变化对测试数据精确度的影响,以及不同天然矿物对激光能量密度的响应尚需进一步明确。本文测定了不同莫氏硬度天然矿物可稳定剥蚀的最小激光能量密度,评估了193nm ArF准分子激光系统中能量密度对地质标准样品(NIST SRM614、USGS BCR-2G、USGS GSC-1G)和天然矿物测试数据质量的影响。研究结果表明:①稳定剥蚀石英和萤石所需的最小激光能量密度为4~5J/cm~2,低于前人的报道值(10J/cm~2),而稳定剥蚀其他矿物(如滑石、磷灰石、刚玉等)所需的最小能量密度一般在1~2J/cm~2;②不同激光能量密度剥蚀条件下,标准样品中大部分微量元素测试结果与推荐值的相对误差小于20%,相对标准偏差(RSD)小于10%,而天然矿物中含量1μg/g的大部分微量元素测试数据的RSD小于20%;③在一定范围内,激光能量密度越大,数据平均相对误差越小,整体质量更好。  相似文献   

5.
本文综述了铜(Cu)同位素分析测试方法的研究进展,提出了一套简单高效的纯化Cu的方法。鉴于原有Cu同位素的标准物质NIST SRM 976已经停产,本文归纳了一些已经报道的Cu同位素的替代标样,认为NIST SRM 3114具有更大的优越性。此外,在质谱测试过程中,利用Ga作为一个新的内标,采用内标法与SSB法结合的方法(C-SSBIN)校正仪器的质量歧视,可以使分析精度提高5倍左右。  相似文献   

6.
激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)技术广泛用来测量固体样品中的微量元素及同位素比值。然而在缺乏基体匹配校准条件下,发生在激光剥蚀过程中的元素分馏效应使得通常采用外标结合内标的方法很难准确量化待测元素的含量。不同岩石/矿物材料自身密度、表面张力、内部结构、元素成分等物理特性不同,对同一波长激光的吸收系数、反射系数、消光长度不同,导致相同实验条件下的激光对不同岩石/矿物剥蚀速率不同、剥蚀物体积不同、剥蚀后形成气溶胶粒子总数及粒径分布规律不同、在ICP中粒子化程度和效率也不同,最终待测元素分馏效应不同。建立了聚焦脉冲激光剥蚀不同基体材料动态物理模型,理论分析了激光脉冲宽度和能量密度对剥蚀速率影响的物理机制。采用193 nm波长的脉冲激光剥蚀不同地质标样NIST 614、NIST612、NIST610、BHVO-2G、BIR-1G、BCR-2G、橄榄石、石榴石、锆石。激光脉宽15 ns、束斑直径60μm、能量60 m J、频率8 Hz,脉冲数分别为25,50,100,150,200个,线性拟合后直线斜率值分别为0.140 44,0.138 05,0.124 13,0.099 11,0.093 87,0.105 39,0.113 86,0.051 22,0.09 341。实验结果表明,相同参数激光剥蚀不同基体时剥蚀速率(深度/脉冲个数)不同,玻璃标样比其它样品更易剥蚀。5 J/cm2能量条件下,平均剥蚀速率分别为169,159,155,118,104,116,115,62,88 nm/pulse;可见随着激光能量密度增加剥蚀速率缓慢增大,NIST614玻璃和石榴石剥蚀速率分别达到最大和最小。激光剥蚀地质样品剥蚀速率变化规律对理解剥蚀速率对元素分馏效应的影响、约束及校正具有理论意义和实践运用价值。  相似文献   

7.
张德贤 《岩矿测试》2012,31(1):120-126
微区原位分析提供了固体物质的元素及同位素组成的空间分布信息,有利于解决不同的地质问题、环境问题和工业方面的问题。磁铁矿中微量元素地球化学组成有助于研究成矿时的物理化学条件和示踪新的矿床。本文建立了利用激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)分析磁铁矿中微量元素的方法,探讨了选择必要的分析元素,选择合适的内标、外标,选择恰当的束斑大小等方法。以LA-ICP-MS分析澳大利亚Ernest Henry IOCG矿床磁铁矿中微量元素的方法为例,采用NIST SRM 610作为外标,Fe作为内标较为合理;正常情况下采用32~60 μm的激光束,但对于个别样品中磁铁矿颗粒较小,可以考虑使用较小的激光束(24 μm或16 μm);为消除质谱干扰,Ti选择测量49Ti,Cu选择测量65Cu,Sn选择测量118Sn。  相似文献   

8.
外标物质及内标元素的选择是激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)准确测定元素含量的关键因素之一。文章选用玻璃标准参考物质NIST 610、GSE-1G、BHVO-2G、BCR-2G、ATHO-G、KL2-G和T1-G作为外标,Si或Zr作为内标,对锆石M257中的Ti进行LA-ICP-MS微区原位测定。结果显示,选择Si或Zr作内标,采用BCR-2G、ATHO-G、KL2-G和T1-G作外标时,Ti含量测定值与参考值之间差异均较大,因此它们不适合作外标物质。采用BHVO-2G作外标和Si作内标,NIST 610作外标和Zr作内标,Ti含量测定值与参考值之间的差异均小于4%,因此BHVO-2G和NIST 610可有条件地作为外标物质。选择Si还是Zr作内标,GSE-1G作外标时,Ti含量的测定值与参考值之间的差异均小于3%,说明GSE-1G是较为合适的外标物质。选用GSE-1G作为外标,Si作内标,对5个标准锆石中的Ti含量进行了测定,结果显示,Ti元素在锆石91500中分布不均匀,而在锆石GJ-1、M257、PENGLAI和MUDTANK中分布均匀。在Ti元素分布均匀的GJ-1、M257、PENGLAI和MUDTANK等4个锆石中,由于Ti的含量均小于5μg/g,不适合作为锆石中Ti元素测定用的外标物质,但可作为测定时的质量监控样品。  相似文献   

9.
古代玻璃材料LA-ICP-MS组分分析及产源研究   总被引:1,自引:1,他引:0  
古代玻璃及玻璃质材料的定量分析对于研究其制作年代及产地、原料的来源以及制作工艺有着重要的参考意义。与电子探针(EMPA)、能谱扫描-电子显微镜(EDX-SEM)等分析方法相比,LA-ICP-MS能够快速且准确地提供样品主次量及微量元素信息。本文对LA-ICP-MS古代玻璃元素定量分析中的影响因素进行研究认为:在193nm激光下玻璃标准NIST610和康宁玻璃标准之间基体差异造成的影响较小,而采用玻璃标准NIST610为外标结合基体归一化法的校正策略测定康宁标准结果表明,该策略能够准确反映不同类型古代玻璃材料中成分组成;实验中不同剥蚀模式的研究,有助于不同实验条件的建立,从而满足不同研究的需要。本次研究对出土样品进行了分析,为该制品的产源研究提供了数据支持。  相似文献   

10.
为了使国内研究人员更为深入的了解双稀释剂法的原理和应用,本文以~(74)Se+~(77)Se双稀释剂为例,详细介绍了双稀释剂法在应用过程中所涉及的双稀释剂配比优化、标定及高精度数据获取的方法和流程。并分别通过蒙特-卡洛数值优化方法和实测数据对~(74)Se+~(77)Se双稀释剂进行了配比的优化,得到了两单稀释剂间和双稀释剂与样品间最佳的取值范围:当~(74)Se_(spk)/~(77)Se_(spk)≈1时,~(77)Se_(spike)/~(78)Se_(sample)≈2为最优配比值,但~(77)Se_(spike)/~(78)Se_(sample)在1~4范围内,硒同位素的分析精度不受影响。基于双稀释的优化结果,对NIST SRM 3149、MH495、GBW(E)080215三种Se的标准溶液进行长期测定,相对于NIST SRM3149,δ~(82/76)Se值分别为0.00‰±0.10‰(2SD,n=65),-3.44‰±0.08‰(2SD,n=21)和-7.90‰±0.10‰(2SD,n=21)。通过与标准-样品匹配法和元素内标法获取的数据进行对比,双稀释剂法获取的数据具有更高的准确度和精密度,这为自然界微小同位素分馏过程的研究奠定了基础。  相似文献   

11.
12.
Microanalytical trace element techniques (such as ion probe or laser ablation ICP-MS) are hampered by a lack of well characterized, homogeneous standards. Two silicate glass reference materials produced by National Institute of Standards and Technology (NIST), NIST SRM 610 and NIST SRM 612, have been shown to be homogeneous and are spiked with up to sixty one trace elements at nominal concentrations of 500 μg g-1 and 50 μg g-1 respectively. These samples (supplied as 3 mm wafers) are equivalent to NIST SRM 611 and NIST SRM 613 respectively (which are supplied as 1 mm wafers) and are becoming more widely used as potential microanalytical reference materials. NIST however, only certifies up to eight elements in these glasses. Here we have compiled concentration data from approximately sixty published works for both glasses, and have produced new analyses from our laboratories. Compilations are presented for the matrix composition of these glasses and for fifty eight trace elements. The trace element data includes all available new and published data, and summaries present the overall average and standard deviation, the range, median, geometric mean and a preferred average (which excludes all data outside ± one standard deviation of the overall average). For the elements which have been certified, there is a good agreement between the compiled averages and the NIST data. This compilation is designed to provide useful new working values for these reference materials.  相似文献   

13.
Fifty elements in NIST SRM 614 and 616 glass reference materials were determined by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). The values determined for NIST SRM 614 agreed well with the NIST-certified and information values (mean relative difference ± 3.6%), except for B, Sc and Sb. The values determined for NIST SRM 616 agreed with the NIST-certified and information values within a mean relative difference of ± 1.5%, except for B, Sc and Ga. In addition, at an 80 μm sampling scale, NIST SRM 614 and 616 glass discs were homogeneous for trace elements within the observed precisions of 5 and 15% (mean), respectively. Detection limits were in the range 0.01 - 0.3 μg g−1 for elements of lower mass numbers (amu < 80) and 1 - 10 ng g−1 for heavy elements (amu > 80). Detection at the sub ng g−1 level is possible for most of the heavy elements by using an ablation pit size larger than 10 0 μm.  相似文献   

14.
New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.  相似文献   

15.
National Institute of Science and Technology (NIST) silicate glass SRM 610 is widely used as a certified reference material for various micro-analytical techniques such as SIMS or laser ablation ICP-MS. SRM 610 has been nominally doped with sixty one trace elements at the 500 μg g−1 level, but certified concentration data exist for only a few of these elements. This study reports concentration data for fifty nine trace elements obtained by ICP-MS, SSMS, LIMS, TIMS, INAA, AAS, and PIXE analyses of two different SRM 610 wafers. Most elements fall within a 10% band around a median value of about 440 μg g−1. The REE concentrations are shown to be constant to 3% (1 σ), thus emphasizing the value of SRM 610 as a reference material for REE analyses.
Comparison of our values with published data suggests that different SRM 610 wafers are, within errors, chemically identical for most elements. Exceptions to this general rule appear to be restricted to elements which were partly lost during the production of the glass, e.g. Ag and Br. On the basis of six independent determinations of Rb concentrations, which are systematically lower by a few percent than the reported NIST value, we argue that the certified Rb concentration may not be representative for all distributed SRM 610 wafers.  相似文献   

16.
A Merchantek LUV266 TM petrographic ultraviolet (UV) laser microprobe has been used in conjunction with a Finnigan MAT ELEMENT TM high resolution ICP double-focusing mass spectrometer (HR-ICP-MS) for solid microsampling and geochemical analysis. This new configuration for laser ablation has the advantage of coupling the high sensitivity and fast scanning technology applied in the ELEMENT with the ablation efficiency of a UV laser. Optimisation of the configuration on the synthetic NIST SRM 612 glass standard reference material using Q-switched UV laser energy of 2 mJ and a 5 Hz repetition rate demonstrates: (1) a linear element response factor throughout the mass spectrum, suggesting limited fractionation during laser ablation; (2) a high sensitivity and very low background noise for most elements of interest; (3) limits of detection ranging from 3 ng g-1 for Sc to 300 pg g-1 for U; (4) a flat topped peak shape suitable for precise isotopic measurements; and (5) a flat bottomed crater geometry which permits progressive ablation for the analysis of thin sections. Average precision and accuracy estimates based on replicate analyses of synthetic NIST standard reference material and USGS BCR-2G glasses are below 10% for most elements.  相似文献   

17.
The microanalytical capability of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to determine ultra trace elemental concentrations has been demonstrated by the analysis of two low concentration glass standard reference materials, NIST SRM 614 and 616. Results for fifty two elements at concentrations in the low ng g-1 range are compared with those determined using secondary ion mass spectrometry (SIMS). Both techniques provide results at these concentrations that generally agree within 95% confidence limits, demonstrating the accuracy for ultra-trace level of in situ determinations by the two techniques. At concentrations of less than 20 ng g-1 in NIST SRM 616, an accuracy and precision of better than 10% has been obtained for most mono-isotopic rare earth elements, when a spot size of 50 μm is used. Limits of detection for selected elements were as low as 0.5 ng g-1.  相似文献   

18.
Ilmenite (FeTiO3) is a common accessory mineral and has been used as a powerful petrogenetic indicator in many geological settings. Elemental fractionation and matrix effects in ilmenite (CRN63E‐K) and silicate glass (NIST SRM 610) were investigated using 193 nm ArF excimer nanosecond (ns) laser and 257 nm femtosecond (fs) laser ablation systems coupled to an inductively coupled plasma‐mass spectrometer. The concentration‐normalised 57Fe and 49Ti responses in ilmenite were higher than those in NIST SRM 610 by a factor of 1.8 using fs‐LA. Compared with the 193 nm excimer laser, smaller elemental fractionation was observed using the 257 nm fs laser. When using 193 nm excimer laser ablation, the selected range of the laser energy density had a significant effect on the elemental fractionation in ilmenite. Scanning electron microscopy images of ablation craters and the morphologies of the deposited aerosol materials showed more melting effects and an enlarged particle deposition area around the ablation site of the ns‐LA‐generated crater when compared with those using fs‐LA. The ejected material around the ns crater predominantly consisted of large droplets of resolidified molten material; however, the ejected material around the fs crater consisted of agglomerates of fine particles with ‘rough' shapes. These observations are a result of the different ablation mechanisms for ns‐ and fs‐LAs. Non‐matrix‐matched calibration was applied for the analysis of ilmenite samples using NIST SRM 610 as a reference material for both 193 nm excimer LA‐ICP‐MS and fs‐LA‐ICP‐MS. Similar analytical results for most elements in ilmenite samples were obtained using both 193 nm excimer LA‐ICP‐MS at a high laser energy density of 12.7 J cm?2 and fs‐LA‐ICP‐MS.  相似文献   

19.
Forty two major (Na, Mg, Ti and Mn) and trace elements covering the mass range from Li to U in three USGS basalt glass reference materials BCR‐2G, BHVO‐2G and BIR‐1G were determined using laser ablation‐inductively coupled plasma‐mass spectrometry. Calibration was performed using NIST SRM 610 in conjunction with internal standardisation using Ca. Determinations were also made on NIST SRM 612 and 614 as well as NIST SRM 610 as unknown samples, and included forty five major (Al and Na) and trace elements. Relative standard deviation (RSD) of determinations was below 10% for most elements in all the glasses under investigation. Consistent exceptions were Sn and Sb in BCR‐2G, BHVO‐2G and BIR‐1G. For BCR‐2G, BHVO‐2G and BIR‐1G, clear negative correlations on a logarithmic scale exist between RSD and concentration for elements lower than 1500 μg g‐1 with logarithmic correlation coefficients between ‐0.75 and ‐0.86. There is also a clear trend of increasing RSD with decreasing concentration from NIST SRM 610 through SRM 612 to SRM 614. These suggest that the difference in the scatter of apparent element concentrations is not due to chemical heterogeneity but reflects analytical uncertainty. It is concluded that all these glasses are, overall, homogeneous on a scale of 60 μm. Our first results on BHVO‐2G and BIR‐1G showed that they generally agreed with BHVO‐2/BHVO‐1 and BIR‐1 within 10% relative. Exceptions were Nb, Ta and Pb in BHVO‐2G, which were 14‐45% lower than reference values for BHVO‐2 and BHVO‐1. Be, Ni, Zn, Y, Zr, Nb, Sn, Sb, Gd, Tb, Er, Pb and U in BIR‐1G were also exceptions. However, of these elements, Be, Nb, Sn, Sb, Gd, Tb, Pb and U gave results that were consistent within an uncertainty of 2s between our data and BIR‐1 reference values. Results on NIST SRM 612 agreed well with published data, except for Mg and Sn. This was also true for elements with m/z 85 (Rb) in the case of NIST SRM 614. The good agreement between measured and reference values for Na and Mg in BCR‐2G, BHVO‐2G and BIR‐1G, and for Al and Na in NIST SRM 610, 612 and 614 up to concentrations of at least several weight percent (which were possible to analyse due to the dynamic range of 108) indicates the suitability of this technique for major, minor and trace element determinations.  相似文献   

20.
Data are reported for rare earth elements (REE) in three geological glass reference materials (BIR-1G, BHVO-2G and BCR-2G) using a UV (266 nm) laser ablation ICP-MS system and the classical (HF-HClO4) acid decomposition method, followed by conventional nebulisation ICP-MS. External calibration of laser ablation analyses was performed using NIST SRM reference materials with internal standardisation using 29Si and 44Ca. Replicate analyses of reference basaltic glasses yielded an analytical precision of 1-5% (RSD) for all the elements by solution ICP-MS and 1-8% (RSD) by laser ablation ICP-MS. The relative differences between the REE concentrations measured by solution and laser ablation ICP-MS compared with the reference values were generally less than 11 % for most elements. The largest deviations occurred for La determined by solution ICP-MS in BIR-1G. The results of both solution and laser ablation ICP-MS agreed well, generally better than 7%, with the exception of La, Pr and Sm in BIR-1G. The measured REE laser ablation data for BIR-1G, BHVO-2G and BCR-2G agreed with the previously published data on these basaltic reference glasses, within a range of 0-10% for most elements. No significant influences were observed for the predicted spectral interferences on some REE isotopes in the analysis of basaltic glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号