首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palaeomagnetic investigation of Lower Ordovician limestone in the vicinity of St. Petersburg yields a pole position at latitude 34.7°N, longitude 59.1°E ( dp / dm =5.7°/6.4°). A probable primary remanence origin is supported by the presence of a field reversal. The limestone carries one other remanent magnetization component associated with a Mesozoic remagnetization event.
An apparent polar wander path is compiled for Baltica including the new result, ranging in age from Vendian to Cretaceous. Ages of the published Lower to mid-Palaeozoic palaeomagnetic pole positions are adjusted in accordance with the timescale of Tucker & McKerrow (1995). The new Arenig result is the oldest of a series of Ordovician and Silurian palaeomagnetic pole positions from limestones in the Baltic region. There are no data to constrain apparent polar wander for the Tremadoc, Cambrian and latest Vendian. If the Fen Complex results, previously taken to be Vendian in age ( c . 565 Ma), are reinterpreted as Permian remagnetizations, an Early Ordovician–Cambrian–Vendian cusp in the polar wander path for Baltica is eliminated. The apparent polar wander curve might then traverse directly from poles for Vendian dykes on the Kola peninsula ( c . 580 Ma) towards our new Arenig pole ( c . 480 Ma). The consequence of this change in terms of the motion of Baltica in Cambrian times is to reduce significantly a rotational component of movement.
The new Arenig pole extends knowledge of Ordovician apparent polar wander an increment back in time and confirms the palaeolatitude and orientation of Baltica in some published palaeogeographies. Exclusion of the Fen Complex result places Baltica in mid- to high southerly latitudes at the dawn of the Palaeozoic, consistent with faunal and sedimentological evidence but at variance with some earlier palaeomagnetic reconstructions.  相似文献   

2.
summary . This study completes palaeomagnetic coverage of Lower Palaeozoic igneous rocks within the Welsh Borderlands, and includes data from Ordovician (Llanvirn and Caradoc) volcanics yielding positive fold tests and palaeomagnetic poles in agreement with other British Ordovician studies. A wide range of Late Ordovician-Lower Silurian (Llandovery) intrusions yield directions of magnetization unlike any previously identified from Lower Palaeozoic rocks of Britain, but highly stable to thermal and af demagnetization, and include a reversal of magnetization. The collective results define a large movement relative to the dipole axis over a period of less than 10 Ma between c .445 and 425 Ma; part of this movement can be explained in terms of complex rotations of the British region during late Ordovician and early Silurian tectonism within the paratectonic Caledonides.  相似文献   

3.
Isotopic determinations (K–Ar, Rb–Sr and Sm–Nd), and trace and rare-earth elemental analyses were made on a few biotite and clay fractions of Palaeozoic bentonite units from the eastern United States. The clay fractions were gently leached with dilute hydrochloric acid to study separately the acid-soluble minerals intimately associated with the extracted clay particles. The data highlight interesting potentials for this integrated approach to decipher complex tectonothermal evolutions of sedimentary basins. Biotite K–Ar ages are consistent with a Middle Ordovician stratigraphic age for the bentonite units with a mean age of 459±10 Ma. The clay residues give a Sm–Nd isochron age of 397±44 Ma, indicative of their crystallization during Acadian tectonothermal activity at about 200 °C. The clay leachates, which are considered to represent mineral phases different from clay material, yield a distinct Sm–Nd isochron age of 285±18 Ma which is indistinguishable from K–Ar ages obtained previously on the clays, suggesting a thermally induced diffusion of radiogenic 40Ar from clay particles during Alleghenian–Ouachita orogenic activity. The Rb–Sr system of the clay material seems to have been variably disturbed, except for the sample taken near the Allegheny Front for which an age of 179±4 Ma suggests a further localized activity of the thrust system at about 130–150 °C. Clearly the limited number of samples does not allow us to perfectly constrain an evolutionary model. However, analysis of the soluble minerals for their contents in metal and rare-earth elements suggests that metal-carrying fluids migrated during the Alleghenian–Ouachita orogenic activity in the eastern North American continent. Consequently, they could have contributed to the concentration of ore deposits in the region, but this possibility needs to be tested with a larger data base.  相似文献   

4.
Summary. A new roadcut has enabled us to sample the south-dipping limb of the Montmartin syncline for a palaeomagnetic reevaluation of an earlier result published by Jones, Van der Voo & Bonhommet. In combination with the results previously published in 1979 for the north-dipping beds of the syncline, a conclusively negative fold test is obtained. The resulting magnetization (declination/inclination =206°/-3°, α95= 12°, palaeopole at 38°S, 325°E) is interpreted to be of Late Carboniferous age, not Late Devonian as thought earlier. Simultaneously, we have re-evaluated the age of the rocks, previously thought to be Late Devonian on the basis of Acritarchs, Chitinozoans and spores. It has not been possible to reconfirm these fossils, not even in the same samples as studied originally; in contrast, the regional presence of Early Palaeozoic fossils suggests to us an age similar to that of other red beds in the Arrnorican Massif, which have been dated as Early Ordovician. The geodynamic implications of our finding that the Montmartin rocks are completely remagnetized, however, are of no great consequence for the geodynamics of the Hercynian belt. Pre-folding magnetization obtained from Silurian and Devonian rocks in Spain and Germany argue for the same conclusion as reached erroneously in our earlier study, namely that the Armorican Massif and adjacent parts of Hercynian Europe were adjointed to North America, Great Britain, the Baltic Shield and the Russian Platform since at least Late Devonian time. If a Medio-European ocean existed during the Palaeozoic, it was virtually closed before the mid-Devonian and of insignificant width during Culm deposition in Early Carboniferoirs time.  相似文献   

5.
1IntroductionAspartofextensivelateProterozoicmobilebeltofEastAntarctica,theupperamphibolitetogranulitefacieshigh-grademetamor...  相似文献   

6.
Summary. Three principal directions of magnetization are recognized in the central part of the Lewisian metamorphic terrain of north-west Scotland. The first ('A') magnetization is a high blocking temperature component residing in magnetite and imposed during post-Laxfordian uplift and cooling. Fifty sites yield an overall mean D = 285.9°, I = 54.9° and palaeomagnetic pole at 273.2° E, 37.6° N ( dp = 3.7°, dm = 5.2°); this magnetization was probably acquired at crustal depths of 6–10 km and is linked to K—Ar uplift ages averaging 1650–1625 Ma. The second ('B') magnetizations are defined by E—W directions and also reside in high blocking temperature components; they are, however, dipolar, have some properties distinct from the 'A' magnetizations, and are correlated with late stages in the history of the complex at 1400–1200 Ma. The third ('C') NE directed magnetizations reside predominantly in low blocking temperature components in pyrrhotite and possibly maghemite, and were probably acquired at a late stage of the regional uplift; they do not correlate with post-1450 Ma magnetizations from the Laurentian Shield and probably relate to the as yet undefined interval 1600–1450 Ma. The collective palaeomagnetic data and certain geologic data suggest that the Lewisian foreland should be rotated by 30° clockwise about a local axis of rotation on the conventional reconstruction of the North Atlantic continents; this rotation is associated with Lower Palaeozoic trans-current movements and may be related to a fourth ('D') magnetization of viscous origin.
A collective assessment of 1850–1600 Ma palaeomagnetic data for the Laurentian Shield defines a large apw loop; there is widespread agreement between data from the constituent structural provinces of the Shield although different metamorphic regions define complementary segments of the loop related to uplift over different intervals of time.  相似文献   

7.
本文对东南极拉斯曼丘陵出露的石榴斜长角闪岩中的角闪石进行了40Ar-39Ar年龄测定,分别得到角闪石视年龄1586Ma、1011~1080Ma、761Ma和529~582Ma,角闪石坪年龄1036Ma和554Ma,角闪石Ar-Ar等时线年龄1010Ma,这些同位素年龄证据,首次完整地记录了该区所经历的几乎所有构造变质热事件,为近几年国内外地质学家关于该区构造变质热事件争论的焦点问题,即晚元古代的1000Ma格林维尔事件(Grenvilian)与早古生代的500Ma泛非事件(Pan-African)孰轻孰重以及前者是否存在,提供了答案。角闪石的40Ar-39Ar年龄测定结果表明,拉斯曼丘陵地区经历了复杂的多期变质演化历史,其原岩可能形成于早-中元古代,占主导地位的应该是晚元古代的1000Ma格林维尔事件,而500Ma泛非事件则是晚期较强烈的变质热事件。  相似文献   

8.
Summary. The Lower Cambrian Caerfai Bay Shales in Dyfed, South Wales, are marine red beds which have been reddened by the diagenetic alteration of volcanic detritus. The pole position of their dominant component of magnetization coincides with those from Lower Ordovician igneous rocks in Great Britain. There is also a subordinate antiparallel component, and some indication of magnetization spanning the folding of the strata, implying a relatively slow acquisition of CRM in a predominantly reversed field. This is consistent with our observation that the magnetization of these marine beds is carried by authigenic haematite.  相似文献   

9.
Summary. The Cordova gabbro of southern Ontario intrudes 1300 Myr old volcanic rocks of the Hastings Lowlands in the Grenville Structural Province. Three distinct vector magnetizations (A, B and C) have been isolated, using a combination of stable endpoints, subtracted vectors from orthogonal vector plots and converging remagnetization circles. The A magnetization, with mean direction D = 294° I =– 55.5° ( k = 42, α95= 5.5°, N = 18 sites), is a high coercivity, high blocking temperature remanence recorded by 49 samples. The B magnetization was isolated in 33 samples and has a mean direction D = 305.5° I =– 1.5° ( k = 24, α95, N = 11 sites). B has lower coercivities and blocking temperatures than A where the two are superimposed. The A and B palaeopoles, 151°E, 10.5°S ( dp = 6°, dm = 8°) and 165.5°E, 24°N ( dp = 5°, dm = 9.5°), fall on the Grenville Track around 900 and 820 Ma respectively. The A and B magnetizations thus date from uplift and cooling following the Grenvillian orogeny. The third magnetization, the C component, has been isolated in 23 samples. Its mean direction is D = 180° I = 27.5° ( k = 18, α95= 10.5°, N = 12 sites). The C is a low coercivity, low blocking temperature overprint of A and B. Its palaeopole, 102°E, 31°N ( dp = 6.5°, dm = 12°), is unlike post-1300 Precambrian poles for cratonic North America but matches Silurian and late Ordovician poles. 40Ar/39Ar plateau ages of 446 and 447 Ma determined by Lopez-Martinez and York for plagioclases from one of the Cordova samples confirm this age assignment. The C magnetization therefore records a previously unrecognized mild thermal or hydrothermal event that occurred in Palaeozoic time, long after the Grenvillian orogeny.  相似文献   

10.
Summary. The remanent magnetization of intrusive/extrusive rocks of the 'basement' complex of East Maio constitutes four components that define two different axes of magnetization, at around dec. 328, inc. 12 and dec. 007, inc. 14 respectively. In general, two or more components co-exist in separate specimens or sites but both axes are present most frequently in the normal sense. The NNW-striking axis, the B-axis, fits very well with the Upper Cretaceous polar wander path for Africa. It is consequently inferred that the major phase of sheet intrusions in Maio dates from this time, probably from the interval 90–70 Myr bp. Comparisons of the directional dispersions in the folded and unfolded states suggest that this injection phase post-dates the uplift of the Central Igneous Complex of the island. The second axis of magnetization, the A -axis, agrees very well with late Teritary—Quaternary palaeomagnetic data for Africa and the Canary Islands. The A -axis is therefore regarded as of secondary origin, being the consequence of a thermal/ chemical overprint during the Miocene—Pliocene volcanism on the island. The occurrence of a 50–70 Myr long period of volcanic quiescence and erosion, between the termination of the early igneous activity (Upper Cretaceous) and the rejuvenated magmatism in Miocene/Pliocene time, is compatible with similar observations in the Canary Islands. In contrast to the palaeomagnetic conclusions, the K/Ar data only give ages around 10 Myr. The unusually young isotope dates are regarded as being due to an almost complete age resetting and are seen in conjuction with the overprinted magnetization. This explanation is further supported by the fact that K/Ar results of pillow lavas underlying Upper Jurassic limestones only give Tertiary ages.  相似文献   

11.
Summary. The magnetization of the Cambrian Wichita Mountains basement complex consists of several components, two of which are shown to be significant. The residual primary remanence is associated with the original titanomagnetite and the dominant secondary component is carried by minerals of the ilmenite-haematite series. The latter has been acquired at temperatures up to 300°C as a result of the regional hydrothermal alteration during late Palaeozoic. The secondary remanence is of thermochemical origin and carries a memory of a variable ambient field direction which may be modelled as a resultant of the geomagnetic field direction contemporaneous with the hydrothermal process and of the direction of the magneto-static field of the primary titanomagnetite. Although the destruction of the original presumably Cambrian remanence has been extreme, in a few cases its direction appears to have been recovered. The results are complicated by the possibility of a self-reversal of secondary remanence as well as geomagnetic field reversal. An issue unresolved by the investigation relates to the possibility of generation of magnetite by heat treatment of rock material in the laboratory. It is generally concluded that it is difficult to recover the original cooling thermoremanence direction in an igneous intrusion which has been subjected later in its life to extreme conditions of hydrothermal alteration.  相似文献   

12.
The diagenetic history of the Ediacaran sedimentary rocks in the East European Craton (EEC) over the area extending from Arkhangelsk (Russia) in the north to Podolia (Ukraine) in the south was revealed by means of the XRD characterization and K–Ar dating of clay fractions, mudstone porosity measurements and organic geochemistry investigations. Mudstone porosity measurements produced direct evidence of shallow maximum burial of the Ediacaran sediments on the craton (Russia, Lithuania, Belarus, Volyn), not exceeding 1.5 km, and much deeper burial at the cratonic margin, in Podolia and Poland. In general, illitization of smectite and biomarker indices indicates more advanced diagenesis at the cratonic margin. K–Ar dating of authigenic illite–smectite and aluminoceladonite revealed the Palaeozoic age of mineral diagenesis (ca. 450–300 Ma) both on the craton and its margin, with older ages generally observed in the north. When the maximum palaeotemperatures were evaluated from illite–smectite and biomarkers, based on the calibrations from the conventional burial diagenetic sections, a major mismatch was detected for the cratonic area: 100°C–130°C from illite––smectite and tens of oC lower from the lipid biomarkers. This diagenetic pattern was interpreted as the result of short‐lasting (in ky scale) pulses of potassium‐bearing hot fluids migrating from the Caledonian and Variscan orogens deep in the craton interior, effectively promoting illitization in porous rocks without altering the organic matter. Analogous short pulses of fluids were responsible for numerous diagenetic phenomena, including Mississippi Valley‐Type ore deposits, in the American Midwest, in front of the Appalachians. K–Ar dating indicates that the entire Proterozoic sedimentary cover of the Great Unconformity on the EEC remained untouched by measureable post‐sedimentary changes until the early Palaeozoic, thus for over 1000 My, which is an unprecedented finding.  相似文献   

13.
Palaeomagnetic data from 182 hand samples collected in a rock sequence of about 620-m of red beds of Late Palaeozoic to Early Triassic age exposed in north-western Argentina (30.3° S 67.7° W), are given.
After cleaning, the majority of the Upper Palaeozoic samples (Middle Section of Paganzo Group) show reversed polarity and yield a palaeomagnetic pole at 78° S 249° E (α95= 3°). They also record a polarity transition which we have correlated with the Middle Permian Quebrada del Pimiento Normal Event. The position of the palaeomagnetic pole and the K-Ar age of a basalatic sill at the base of the sequence support this correlation.
Stable remanent magnetization has been isolated in the majority of samples from the Upper Section of the Paganzo Group; it is predominantly reversed and reveals three normal events and also three geomagnetic excursions suggesting an Illawarra Zone age (post Kiaman, Late Tatarian-Early Scythian). The palaeomagnetic pole of the reversely magnetized samples is located at 75° S 285° E(α95= 13°).
The red beds involved in this study are correlated with red beds from the Corumbataí Formation (State of Paraná, Brazil) and with igneous rocks from the Quebrada del Pimiento Formation (Province of Mendoza, Argentina).
The South American Middle and Upper Permian, Upper Permian—Lower Triassic, Lower, Middle and Upper Triassic and Middle Jurassic palaeomagnetic poles reflect a quasistatic period with mean pole at 82° S 244° E, (α95= 4°) which followed the South American Late Palaeozoic polar shift.  相似文献   

14.
Summary. Palaeomagnetic data from 71 hand samples of igneous rocks of Late Ordovician age exposed in western Argentina (31.3°S, 69.4°W, Alcaparrosa Formation) are given. Stable remanent magnetization was isolated in the majority of samples; they yield a palaeomagnetic pole at 56°S 33°E ( N = 8, α95= 16°). Whole rock K-Ar age determinations yield an age of 416 ± 10 Myr for a pillow lava of the Alcaparrosa Formation.
Palaeomagnetic data for South America, Africa, Australia, Antarctica and India suggest that Gondwana was a unit at least as far back as 1000 Myr. The palaeomagnetic data define a rapid polar migration for Gondwana in Ordovician time which is consistent with the widespread occurrences of Late Ordovician glacial deposits across this supercontinent.  相似文献   

15.
A palaeomagnetic study has been carried out on late Palaeozoic rocks exposed in the Sierras Australes thrust and fold belt of Buenos Aires province (Argentina), in the early Permian red sandstones and clay siltstones of the Tunas Formation. The sections sampled are exposed in the eastern parts of the belt, in Sierra de las Tunas (north) and Sierra de Pillahuincó (south). More than 300 specimens were collected from 25 sites, in three localities with different structural attitudes. Demagnetization at high temperatures isolated a characteristic remanence at 20 sites. All the localities have a reverse characteristic remanence, suggesting that the magnetization was acquired during the Kiaman interval. Stepwise tectonic tilt correction suggests that the Tunas Formation in these localities acquired its magnetization during folding in early Permian times. Palaeomagnetic poles were computed for each locality based on partial tilt-corrected remanence directions. Taking into account the fact that these localities are close to one another and that the rocks are all of reverse polarity, a group syntectonic palaeomagnetic pole called Tunas was calculated: longitude: 13.9°E, latitude: 63.0°S; A 95 = 5.4°, K = 39.7, N = 19. This pole is consistent with previously calculated poles from South America assigned to the early Permian. In age it corresponds to the early Permian San Rafaelic tectonic phase of the Sierras Australes. Independent geological evidence indicates that the Tunas Formation underwent syndepositional deformation. We conclude that the Tunas Formation was deposited, deformed and remagnetized, all during the early Permian.  相似文献   

16.
The Nama Group of southern Namibia is a candidate for the Terminal Proterozoic Global Stratotype Section and Point (GSSP). Desirable characteristics of a GSSP include a well-preserved index-fossil assemblage, little deformation or metamorphism. well-constrained isotopic ages, stable-isotope records and magnetostratigraphic control. The age of the Nama Group sediments is now constrained to between 570 and 510 Ma. Assuming the Gondwana assembly was nearly complete at this same time, there is a discrepancy between the previously published Nama poles, a revised 550-510 Ma apparent polar wander path for Gondwana and the preceding supercontinental assemblages of Rodinia and Panottia. For these reasons, the Nama Group sediments were resampled in an effort to evaluate the potential of detailing the magnetostratigraphy of the Nama Group and resolving the discrepancy between the Nama poles and the APWP of Gondwana. Collectively, both the previous studies of the Nama Group and this one show a complex series of overprints and no easily discernible primary direction of magnetization. We therefore urge caution in using the Nama Group poles in any tectonic models of the Neoproterozoic-Early Palaeozoic. Specifically, the N1 component of magnetization, previously identified as a primary magnetization, was discovered in a younger suite of samples. Therefore, previous tectonic models that used the N1 magnetization direction as representative of the time of Nama deposition should be revised in light of these recent findings.  相似文献   

17.
Summary. Thirty-six palaeomagnetic sampling sites distributed within 6000 m of dominantly andesitic flows and tuffs of Cretaceous age from the La Serena area, Chile confirm the normal polarity bias of the Cretaceous period. Af, thermal and limited chemical demagnetization techniques have been used in testing the stability of the remanent magnetization isolated in samples from these sites. A positive fold test in the Quebrada Marquesa Formation, the second lowest in the stratigraphic pile, confirms that the magnetization isolated is pre-Tertiary in age. Ages calculated by the K–Ar whole rock method however, appear to have been variably up-dated probably due to argon loss caused by Cretaceous–Tertiary intrusives. Thermal and hydrothermal effects of these intrusions have probably reset the magnetization in the youngest formation of the volcanic pile. A composite palaeomagnetic pole calculated from the 30 site poles of the three lower formations (209° E, 81° S, A95= 4½°), is in good agreement with mid to Late Cretaceous poles derived from rock units of the stable platform of South America. The use of Andean–Caribbean palaeomagnetic data however, to resolve small time-dependent polar shifts within the Cretaceous and thus to estimate the time of opening of the south Atlantic is questioned. Many of the Andean–Caribbean Cretaceous poles appear to have been affected by local tectonic rotation.  相似文献   

18.
Summary. The Precambrian basement under east-central Kansas was drilled at two circular aeromagnetic positives, one at Osawattamie and one at Big Springs. The core retrieved from these sites is a coarse to medium grained granite which has been dated by U-Pb to be 1350 Ma old. The palaeomagnetism of these azimuthally unoriented cores was studied to see if a technique which uses low-coercivity, low-temperature magnetization components to orient the cores would allow an independent confirmation of the core's mid-Proterozoic age. Orthogonal projection plots of the alternating field (af) and thermal demagnetization data show that the magnetization of these cores is relatively simple, having only two components: a low-temperature, low-coercivity magnetization with steep positive inclinations and a shallow, negative inclination characteristic magnetization for the Osawattamie core or a positive, moderate inclination characteristic magnetization for the Big Springs core. If the declination of the low-temperature, low-coercivity component is aligned parallel to the present field declination, the characteristic directions may be azimuthally oriented. This allows the calculation of palaeomagnetic poles for the Big Springs core (lat. = 4.5°S, long. = 29.9°E) and the Osawattamie core (lat.= 20.2°N, long. = 39.3°E) which are consistent with Irving's apparent polar wander path for Laurentia at about 1300–1400 Ma. Comparison of anhysteretic remanent magnetization (ARM), viscous remanent magnetization (VRM), and isothermal remanent magnetization af demagnetization curves with a natural remanent magnetization (NRM) demagnetization curve suggests that the Osawattamie core probably acquired a piezoremanent magnetization (PRM) parallel to the core axis during drilling.  相似文献   

19.
The K/Ar ages of illite/smectite (I/S) were measured from Middle Ordovician K-bentonites both west and east of the present crest of the Cincinnati Arch and the Nashville dome to test a previous hypothesis that I/S formed by reaction with migrated saline solutions during the Alleghanian Orogeny. The K/Ar ages of I/S at the distal margin of the southern Appalachian basin and from central Indiana range from 251 to 277 Ma. However, the ages of I/S from west of the crest of the Cincinnati Arch are slightly older (286–301 Ma) and the ages of I/S from north-eastern Indiana, on the northern edge of the Kankakee Arch and in effect in the Michigan basin, are the oldest measured in this study (315–325 Ma). The westward decrease in the K/Ar ages of I/S from Late Pennsylvanian ages in the proximal basin (286–303 Ma) to Permian (251–277 Ma) at the distal margin suggest that I/S was formed by the westward migration of fluids during the Alleghanian Orogeny as opposed to being formed by projected deep burial by Permian sediments. Moreover, the available thermal maturation data suggest the Cincinnati Arch was not buried deeply. The ages of I/S west of the Cincinnati Arch are an enigma as they are older than the ages in the distal Appalachian basin. The ages of I/S from central Indiana within the Illinois basin suggest the possibility that I/S was formed by reaction with fluids that migrated from the Ouachita orogenic belt in Mississippi. The oldest ages of I/S from north-eastern Indiana suggest the formation of I/S might have been influenced by the presence of potassic brines from the Michigan basin.  相似文献   

20.
Summary. The seismic structure has been measured to a depth of about 3 km along a 30 km seismic profile in east central Ireland. This profile is unusual in that it is the S -wave velocity—depth structure that has been measured to a degree of precision more normally associated with P -wave results. One reason for this is that the sources used were quarry blasts which generated strong S -waves and short-period surface waves but rather weak P -waves.
The results show a layer of Carboniferous limestone with shear velocity 2.65 km−1 s overlying a layer with a velocity of 3.06 km s−1. This second layer was interpreted as Lower Palaeozoic strata (Silurian/Ordovician) since this velocity was evident in an inlier seen at the surface at the northern end of the line. A third refraction horizon, shear velocity 3.45 km s−1 and displaying a basinal structure, was also recognized. This may be Cambrian or Precambrian basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号