首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Adequate knowledge of soil moisture storage as well as evaporation and transpiration at the land surface is essential to the understanding and prediction of the reciprocal influences between land surface processes and weather and climate. Traditional techniques for soil moisture measurements are ground-based, but space-based sampling is becoming available due to recent improvement of remote sensing techniques. A fundamental question regarding the soil moisture observation is to estimate the sampling error for a given sampling scheme [G.R. North, S. Nakamoto, J Atmos. Ocean Tech. 6 (1989) 985–992; G. Kim, J.B. Valdes, G.R. North, C. Yoo, J. Hydrol., submitted]. In this study we provide the formalism for estimating the sampling errors for the cases of ground-based sensors and space-based sensors used both separately and together. For the study a model for soil moisture dynamics by D. Entekhabi, I. Rodriguez-Iturbe [Adv. Water Res. 17 (1994) 35–45] is introduced and an example application is given to the Little Washita basin using the Washita '92 soil moisture data. As a result of the study we found that the ground-based sensor network is ineffective for large or continental scale observation, but should be limited to a small-scale intensive observation such as for a preliminary study.  相似文献   

2.
Quantification of rainfall and its spatial and temporal variability is extremely important for reliable hydrological and meteorological modeling. While rain gauge measurements do not provide reasonable areal representation of rainfall, remotely sensed precipitation estimates offer much higher spatial resolution. However, uncertainties associated with remotely sensed rainfall estimates are not well quantified. This issue is important considering the fact that uncertainties in input rainfall are the main sources of error in hydrologic processes. Using an ensemble of rainfall estimates that resembles multiple realizations of possible true rainfall, one can assess uncertainties associated with remotely sensed rainfall data. In this paper, ensembles are generated by imposing rainfall error fields over remotely sensed rainfall estimates. A non-Gaussian copula-based model is introduced for simulation of rainfall error fields. The v-transformed copula is employed to describe the dependence structure of rainfall error estimates without the influence of the marginal distribution. Simulations using this model can be performed unconditionally or conditioned on ground reference measurements such that rain gauge data are honored at their locations. The presented model is implemented for simulation of rainfall ensembles across the Little Washita watershed, Oklahoma. The results indicate that the model generates rainfall fields with similar spatio-temporal characteristics and stochastic properties to those of observed rainfall data.  相似文献   

3.
In this paper, we investigate the possibility to improve discharge predictions from a lumped hydrological model through assimilation of remotely sensed soil moisture values. Therefore, an algorithm to estimate surface soil moisture values through active microwave remote sensing is developed, bypassing the need to collect in situ ground parameters. The algorithm to estimate soil moisture by use of radar data combines a physically based and an empirical back‐scatter model. This method estimates effective soil roughness parameters, and good estimates of surface soil moisture are provided for bare soils. These remotely sensed soil moisture values over bare soils are then assimilated into a hydrological model using the statistical correction method. The results suggest that it is possible to determine soil moisture values over bare soils from remote sensing observations without the need to collect ground truth data, and that there is potential to improve model‐based discharge predictions through assimilation of these remotely sensed soil moisture values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Minha Choi 《水文研究》2012,26(4):597-603
In the past few decades, there have been great developments in remotely sensed soil moisture, with validation efforts using land surface models (LSMs) and ground‐based measurements, because soil moisture information is essential to understanding complex land surface–atmosphere interactions. However, the validation of remotely sensed soil moisture has been very limited because of the scarcity of the ground measurements in Korea. This study validated Advanced Microwave Scanning Radiometer E (AMSR‐E) soil moisture data with the Common Land Model (CLM), one of the most widely used LSMs, and ground‐based measurements at two Korean regional flux monitoring network sites. There was reasonable agreement regarding the different soil moisture products for monitoring temporal trends except National Snow and Ice Data Centre (NSIDC) AMSR‐E soil moisture, albeit there were essential comparison limitations by different spatial scales and soil depths. The AMSR‐E soil moisture data published by the National Aeronautics and Space Administration and Vrije Universiteit Amsterdam (VUA) showed potential to replicate temporal variability patterns (root‐mean‐square errors = 0·10–0·14 m3 m?3 and wet BIAS = 0·09 ? 0·04 m3 m?3) with the CLM and ground‐based measurements. However, the NSIDC AMSR‐E soil moisture was problematic because of the extremely low temporal variability and the VUA AMSR‐E soil moisture was relatively inaccurate in Gwangneung site characterized by complex geophysical conditions. Additional evaluations should be required to facilitate the use of recent and forthcoming remotely sensed soil moisture data from Soil Moisture and Ocean Salinity and Soil Moisture Active and Passive missions at representative future validation sites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
To develop geosciences quantification and multi-dimensional researches will be an inevitable trend in the 21st century. The interaction between the land surface and the atmosphere not only serves as an important component in geosciences quantification, bu…  相似文献   

6.
This study aims at evaluating the uncertainty in the prediction of soil moisture (1D, vertical column) from an offline land surface model (LSM) forced by hydro-meteorological and radiation data. We focus on two types of uncertainty: an input error due to satellite rainfall retrieval uncertainty, and, LSM soil-parametric error. The study is facilitated by in situ and remotely sensed data-driven (precipitation, radiation, soil moisture) simulation experiments comprising a LSM and stochastic models for error characterization. The parametric uncertainty is represented by the generalized likelihood uncertainty estimation (GLUE) technique, which models the parameter non-uniqueness against direct observations. Half-hourly infra-red (IR) sensor retrievals were used as satellite rainfall estimates. The IR rain retrieval uncertainty is characterized on the basis of a satellite rainfall error model (SREM). The combined uncertainty (i.e., SREM + GLUE) is compared with the partial assessment of uncertainty. It is found that precipitation (IR) error alone may explain moderate to low proportion of the soil moisture simulation uncertainty, depending on the level of model accuracy—50–60% for high model accuracy, and 20–30% for low model accuracy. Comparisons on the basis of two different sites also yielded an increase (50–100%) in soil moisture prediction uncertainty for the more vegetated site. This study exemplified the need for detailed investigations of the rainfall retrieval-modeling parameter error interaction within a comprehensive space-time stochastic framework for achieving optimal integration of satellite rain retrievals in land data assimilation systems.  相似文献   

7.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The paper reviews the application of remote sensing to forest hydrology. After discussing the general advantages and disadvantages of satellite remote sensing, the estimation of precipitation, changes in soil moisture, runoff, radiation components, sensible heat flux, latent heat flux, soil heat flux, changes in energy storage in biomass, primary production and monitoring the extent, type and density of forests are reviewed. Finally, the paper looks forward to future developments and concludes that these are likely to come from the use of multitemporal data, combined analysis of different types of remotely sensed data and of remotely sensed and ground data, improved image analysis techniques and combining satellite data with models.  相似文献   

9.
Soil moisture (SM) can be retrieved from active microwave (AM), passive microwave (PM) and thermal infrared (TIR) observations, each having unique spatial and temporal coverages. A limitation of TIR‐based retrievals is a dependence on cloud‐free conditions, whereas microwave retrievals are almost all weather proof. A downside of SM retrievals from PM is the coarse spatial resolution. Although SM retrievals at coarse spatial resolution proved to be valuable for global‐scale and continental‐scale studies, their value for regional‐scale studies remains limited. To increase the use of SM retrievals from PM observations, an existing method to enhance their spatial resolution was applied. We present an intercomparison study over the Iberian Peninsula for three SM products on two different spatial sampling grids. The remotely sensed SM products were also compared with in situ observations from the Remedhus network. Variations between ground data and satellite‐based SM are observed; all three remotely sensed SM products show good agreement to the ground observations. The comparison shows that these ground observations and satellite data are consistent, based on the correlation coefficient (R) and root mean square error (RMSE). The remotely sensed products were intercompared after sampling at 25 × 25 km2 and after applying the smoothing filter‐based intensity modulation (SFIM) downscaling technique at 10 × 10 km2 grids. After the application of the SFIM technique, the SM retrievals from PM observations show better agreement with the other remotely sensed SM products for approximately 40% of the study area. For another 40% of the study area, we found a similar agreement between these product combinations, whereas in extreme environments, both arid and densely vegetated regions, the agreement decreases after the application of the SFIM technique. Agreement between retrievals of absolute SM content from PM and TIR observations is generally high (R = 0.77 for semi‐arid areas). This study enhances our understanding of the remotely sensed SM products for improvements of SM retrieval and merging strategies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Cosmic‐ray soil moisture sensors have the advantage of a large measurement footprint (approximately 700 m in diameter) and are able to operate continuously to provide area‐averaged near‐surface (top 10–20 cm) volumetric soil moisture content at the field scale. This paper presents the application of this technique at four sites in southern England over almost 3 years. Results show the soil moisture response to contrasting climatic conditions during 2011–2014 and are the first such field‐scale measurements made in the UK. These four sites are prototype stations for a UK COsmic‐ray Soil Moisture Observing System, and particular consideration is given to sensor operating conditions in the UK. Comparison of these soil water content observations with the Joint UK Land Environment Simulator 10‐cm soil moisture layer shows that these data can be used to test and diagnose model performance and indicate the potential for assimilation of these data into hydro‐meteorological models. The application of these large‐area soil water content measurements to evaluate remotely sensed soil moisture products is also demonstrated. Numerous applications and the future development of a national COsmic‐ray Soil Moisture Observing System network are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Data assimilation as a method to predict variables, reduce uncertainties and explicitly handle various sources of uncertainties has recently received widespread attention and has been utilized to combine in situ and remotely sensed measurements with hydrological models. However, factors that significantly influence the capability of data assimilation still need testing and verifying. In this paper, synthetic surface soil moisture data are assimilated into the Soil and Water Assessment Tool (SWAT) model to evaluate their impact on other hydrological variables via the ensemble Kalman smoother (EnKS), using data from the Heihe River Basin, northwest China. The results show that the assimilation of surface soil moisture can moderately improve estimates of deep layer soil moisture, surface runoff and lateral flow, which reduces the negative influences of erroneous forcing and inaccurate parameters. The effects of the spatially heterogeneous input data (land cover and soil type) on the performance of the data assimilation technique are noteworthy. Moreover, the approaches including inflation and localization are specifically diagnosed to further extend the capability of the EnKS.  相似文献   

12.
The impact of rainfall on the spatial-temporal soil moisture variability is investigated by using a model of the soil moisture dynamics and two rainfall models, the noise-forced diffusive precipitation model and the WGR model. The study shows that the variability of the soil moisture field is impacted during the limited time of the storm period. During the interstorm period, the variability of the soil moisture field is closely related with the soil texture, as supported by the analysis of the Washita '92 data set. As the impact of rainfall on the variability of the soil moisture field is limited to the short time period of precipitation, the role of the rainfall is simplified as a source of water to the soil moisture field without any consideration of its variability and/or organization in space. A simulation study of the soil moisture field temporal evolution also supports this result, i.e. a strong relationship between the soil moisture field and the variability of its medium. Also, larger variabilities of the loss field coefficient result in easier removal of moisture from the soil.  相似文献   

13.
Aerosol particles over land mainly come from man- made source such as biomass burning, industrial de-bris and natural source such as soil dust, sea salt parti-cles, etc. More and more research results show that, aerosols impact global and regional energy radiative budget; aerosol particles also modify the cloud mi-crophysics, as a result, aerosol particles may change the cloud radiative properties. Aerosol particles also play an important role in many biogeochemical cycles. All the above-menti…  相似文献   

14.
Understanding the spatio-temporal characteristics of water storage changes is crucial for Ethiopia, a country that is facing a range of challenges in water management caused by anthropogenic impacts as well as climate variability. In addition to this, the scarcity of in situ measurements of soil moisture and groundwater, combined with intrinsic “scale limitations” of traditional methods used in hydrological characterization are further limiting the ability to assess water resource distribution in the region. The primary objective of this study is therefore to apply remotely sensed and model data over Ethiopia in order to (i) test the performance of models and remotely sensed data in modeling water resources distribution in un-gauged arid regions of Ethiopia, (ii) analyze the inter-annual and seasonal variability as well as changes in total water storage (TWS) over Ethiopia, (iii) understand the relationship between TWS changes, rainfall, and soil moisture anomalies over the study region, and (iv) identify the relationship between the characteristics of aquifers and TWS changes. The data used in this study includes; monthly gravity field data from the Gravity Recovery And Climate Experiment (GRACE) mission, rainfall data from the Tropical Rainfall Measuring Mission (TRMM), and soil moisture from the Global Land Data Assimilation System (GLDAS) model. Our investigation covers a period of 8 years from 2003 to 2011. The results of the study show that the western part and the north-eastern lowlands of Ethiopia experienced decrease in TWS water between 2003–2011, whereas all the other regions gained water during the study period. The impact of rainfall seasonality was also seen in the TWS changes. Applying the statistical method of Principal Component Analysis (PCA) to TWS, soil moisture and rainfall variations indentified the dominant annual water variability in the western, north-western, northern, and central regions, and the dominant seasonal variability in the western, north-western, and the eastern regions. A correlation analysis between TWS and rainfall indicated a minimum time lag of zero to a maximum of six months, whereas no lag is noticeable between soil moisture anomalies and TWS changes. The delay response and correlation coefficient between rainfall and TWS appears to be related to recharge mechanisms, revealing that most regions of Ethiopia receive indirect recharge. Our results also show that the magnitude of TWS changes is higher in the western region and lower in the north-eastern region, and that the elevation influences soil moisture as well as TWS.  相似文献   

15.
Although remote sensing data are often plentiful, they do not usually satisfy the users’ needs directly. Data assimilation is required to extract information about geophysical fields of interest from the remote sensing observations and to make the data more accessible to users. Remote sensing may provide, for example, measurements of surface soil moisture, snow water equivalent, snow cover, or land surface (skin) temperature. Data assimilation can then be used to estimate variables that are not directly observed from space but are needed for applications, for instance root zone soil moisture or land surface fluxes. The paper provides a brief introduction to modern data assimilation methods in the Earth sciences, their applications, and pertinent research questions. Our general overview is readily accessible to hydrologic remote sensing scientists. Within the general context of Earth science data assimilation, we point to examples of the assimilation of remotely sensed observations in land surface hydrology.  相似文献   

16.
For many years hydrologists have tried to build physically realistic models which are still simple enough to be fitted to a range of observations made in the field. This is an ongoing process which will become even more difficult as the quality and variety of field and remotely sensed data improves. Hence models must be able to predict soil moisture patterns in time and in space as well as the outflow hydrograph. The model presented here (TOPMODEL) aims to predict the nature of variable source areas in a way that reflects their dynamics over space and time. All component processes are described and shown in operation. As TOPMODEL and similar models have a growing popularity, this paper can be seen as a demonstration of the model's predictive capabilities. The model is applied to the catchments of Plynlimon, mid-Wales for 1984, 1985 and 1986 data sets. The model has been thoroughly tested and cross-validated against independent data sets for different time periods, for a separate catchment, for internal gauges and for wet and dry periods. The resulting predicted soil moisture patterns show a small, semi-permanent variable source area that has the ability during large storms to expand dynamically over short time periods. Spatial predictions of evapotranspiration are also shown which reflect the influence of soil moisture patterns on this process. The weakest component of the model is the representation of root zone evaporation and how this pre-sets the antecedent condition of the catchment during long dry periods.  相似文献   

17.
The objective of this study was to validate the soil moisture data derived from coarse‐resolution active microwave data (50 km) from the ERS scatterometer. The retrieval technique is based on a change detection method coupled with a data‐based modelling approach to account for seasonal vegetation dynamics. The technique is able to derive information about the soil moisture content corresponding to the degree of saturation of the topmost soil layer (∼5 cm). To estimate profile soil moisture contents down to 100 cm depth from the scatterometer data, a simple two‐layer water balance model is used, which generates a red noise‐like soil moisture spectrum. The retrieval technique had been successfully applied in the Ukraine in a previous study. In this paper, the performance of the model in a semi‐arid Mediterranean environment characterized by low annual precipitation (400 mm), hot dry summers and sandy soils is investigated. To this end, field measurements from the REMEDHUS soil moisture station network in the semi‐arid parts of the Duero Basin (Spain) were used. The results reveal a significant coefficient of determination (R2 = 0·75) for the averaged 0–100 cm soil moisture profile and a root mean square error (RMSE) of 2·2 vol%. The spatial arrangement of the REMEDHUS soil moisture stations also allowed us to study the influence of the small‐scale variability of soil moisture within the ERS scatterometer footprint. The results show that the small‐scale variability in the study area is modest and can be explained in terms of texture fraction distribution in the soil profiles. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Process-based, distributed-area snowmelt runoff models operating at small scales are essential to understand subtle effects of climate change, but require data not commonly available. Temperature index models operating over large areas provide realistic simulations of basin runoff with operationally available data, but lack rigorous physically based algorithms. A compromise between the two types of models is required to provide realistic evaluations of basin response to environmental changes in cold regions. One adaptation that is uniformly required for snowmelt models is the use of remotely sensed data, either as input or in model validation. At a minimum, snowmelt forecasting models need to incorporate snowcover extent information, which is currently obtained operationally. As more remote sensing capabilities come on line, models should accept upgraded information on snow water equivalent; additional remotely sensed information on landcover, frozen soil, soil moisture, cloudiness and albedo would also be useful. Adaptations to the semi-distributed snowmelt runoff model (SRM) are underway to make it more physically based for use in large area studies. A net radiation index has been added to the model, which formerly used only a temperature (degree–day) index to melt snow from a basin's elevation zones. The addition of radiation to the SRM allows the basin to be subdivided into hydrological response units by general aspect (orientation) as well as elevation. Testing of the new radiation-based SRM with measured radiation from a small research basin is the first step towards large scale simulations. Results from the W-3 research basin in Vermont, USA are promising. In the radiation version, the factor that multiplies the degree–day index is estimated independently of model output and is held constant throughout the season, in contrast with the degree–day version, where the corresponding factor is allowed to increase throughout the season. Without calibrating or optimizing on this important parameter, the goodness-of-fit measure R2 is improved in two out of six test years when the radiation version of the SRM is used in place of the degree–day version in melt season simulations. When the accumulation of error is eliminated with periodic updating of streamflow, more significant improvement is noted with radiation included.  相似文献   

19.
Reliable estimates of groundwater recharge are required for the sustainable management of surface and ground water resources in semi‐arid regions particularly in irrigated regions. In this study, groundwater recharge was estimated for an irrigated catchment in southeast Australia using a semi‐distributed hydrological model (SWAT). The model was calibrated under the dry climatic conditions for the period from August 2002 to July 2003 using flow and remotely sensed evapotranspiration (ET). The model was able to simulate observed monthly drain flow and spatially distributed remotely sensed ET. Recharge tended to be higher for irrigated land covers, such as perennial pasture, than for non‐irrigated land. On average, the estimated annual catchment recharge ranged between 147 and 289 mm which represented about 40% of the total rainfall and irrigation inputs. The optimized soil parameters indirectly reflected flow bypassing the soil matrix that could be responsible for this substantial amount of recharge. Overall, the estimated recharge was much more than that previously estimated for the wetter years. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Surface soil moisture is an important parameter in hydrology and climate investigations. Current and future satellite missions with L-band passive microwave radiometers can provide valuable information for monitoring the global soil moisture. A factor that can play a significant role in the modeling and inversion of microwave emission from land surfaces is the surface roughness. In this study, an L-band parametric emission model for exponentially correlated surfaces was developed and implemented in a soil moisture retrieval algorithm. The approach was based on the parameterization of an effective roughness parameter of Hp in relation with the geometric roughness variables (root mean square height s and correlation length l) and incidence angle. The parameterization was developed based on a large set of simulations using an analytical approach incorporated in the advanced integral equation model (AIEM) over a wide range of geophysical properties. It was found that the effective roughness parameter decreases as surface roughness increases, but increases as incidence angle increases. In contrast to previous research, Hp was found to be expressed as a function of a defined slope parameter m = s2/l, and coefficients of the function could be well described by a quadratic equation. The parametric model was then tested with L-band satellite data in soil moisture retrieval algorithm over the Little Washita watershed, which resulted in an unbiased root mean square error of about 0.03 m3/m3 and 0.04 m3/m3 for ascending and descending orbits, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号