首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 78 毫秒
1.
Long-and short-term climatic curves were preliminarily established based on the comprehensive analysis of geochemical information since the Late Cenozoic in the Qinghai Xizang(Qinghai-Tibet)Plateau.The curves show that the climate in the plateau was alternatively dry-warm and cold-wet during the period of 30-3.4 Ma when the plateau was not uplifted to an enough altitude and the monsoon was not completely formed either,In the period of 3.4-0.73 Ma.the climate fluctuated between dry-cold and wet-warm when the plateau was rapidly uplifted and the Asian monsoon was consequently formed.Since 0.73 Ma.the climate became even drier when the plateau continuously rose.In the Holocene period.the climate alternatively changed with a complex model of being cool-dry,warm-wet and cold-wet.  相似文献   

2.
We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene–Eocene, Oligocene, Miocene, and Pliocene of the Qinghai–Tibet Plateau by compiling data regarding the type, tectonic setting, and lithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan–Garzê and Gangdisê belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai–Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdisê–Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan–Garzê, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining–Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18–13 Ma, and north–south fault basins formed in southern Tibet ca. 13–10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil–Qiangtang, Tarim, and Qaidam.  相似文献   

3.
The Qinghai-Xizang Plateau is an area where a large number of salt lakes are distributed. We have collected several hundred samples of natural waters over the Plateau since 1976 and carried out researches on their hydrogen and oxygen isotopes. The results indicate that theδD and δ18O values of the salt lake waters over the Plateau range from −64.1 to +12.4‰ and from −11.19 to +8.62‰, respectively. From the different types of surfaces, ground and lake waters of various salinities it is inferred that the compositions of H and O isotopes in the initial water of Qinghai Lake areδD=−55.0‰ and {ie336-1}; and those in the original water from the lakes in northern Xizang, areδD=−116.0‰ and {ie336-2}. Brines in the salt lakes are derived from rain water through prolonged circulation. Oilfield water also makes some contribution to the salt lakes in the Qaidam Basin. Similar slopes of evaporation lines of water isotopes are noticed for the Qinghai Lake area and northern Xizang. This is attributed to the evolution of the isotopes in these water bodies in an environment of middle latitude and high elevation.  相似文献   

4.
青藏高原新生代三阶段造山隆升模式:火成岩岩石学约束   总被引:17,自引:1,他引:17  
赖绍聪 《矿物学报》2000,20(2):182-190
从岩石从地构造学的角度,分析讨论了青藏高原新生代岩浆作用的特点、差异、成对性及其对高魇隆升深部动力学过程的岩石约束,在此基础上是提出青藏高原是以冈底斯-羌塘造山带为核心,通过三次造山幕事件而形成的高原隆升新模式。  相似文献   

5.
6.
采自青藏高原腹地温泉地区新生代地层中的孢粉组合资料表明:从古新世到早中新世,古植被由早期的针阔叶混交林-森林草原植被向晚期的疏林草原植被演化,古气候也由亚热带暖湿气候向温凉气候演化;从上新世到早更新世,阔叶树种明显减少,而草本植物显著增多,反映气候开始向干冷方向演化;而中更新世晚期以来,出现稀疏草原植被向荒漠草原植被的演化,最终塑造了现代以藜、蒿为主的荒漠草原植被环境。高原腹地生态环境变化揭示了青藏高原自古新世以来至少经历了3次具有生态环境意义的表面隆升事件:古新世—早渐新世沱沱河组冲积扇砾岩沉积以及孢粉组合分析表明,青藏高原在白垩纪末—古新世初已隆升至1000~1500m,高原地形可能是高原(高山)与盆地相间的地貌格局;早中新世五道梁组植被中亚热带成分的显著增高,可能与高原表面隆升诱发高原季风而导致气候湿润有关,推测高原已隆升至2000~2500m;而中更新世晚期以草本植物为主,反映高原植被已经发生了转型,高原已隆升至3000m以上。  相似文献   

7.
青藏高原东北部的形成演化是检验高原隆升模型及其驱动季风-干旱环境形成假说的关键。青海贵德和西宁盆地新生代高精度磁性地层和盆地演化揭示出贵德和西宁盆地在早新生代两个盆地曾经为一个统一的、发育于东昆仑山前的弱挤压型陆内挠曲盆地或前陆盆地,可能包括兰州盆地、循化-化隆盆地和祁连山东部一些盆地在内的周边地区都向这个统一的盆地内注入水流和沉积物质,在西宁一带形成汇水中心,并在当时为行星风系的亚热带副高压带作用下形成巨厚的膏盐层。从约21Ma的中新世早期开始,前陆盆地挠曲下沉明显加剧,盆地早期地层被挤压变形,形成盆地中最显著的角度不整合,推测分隔贵德盆地东部的海宴—泽库右旋断裂强烈活动,分隔贵德和西宁盆地的拉脊山东部开始隆升,贵德盆地河流水系由北转向西流,至中中新世,隆升可能席卷整个拉脊山,贵德盆地水系明显南流,盆地挤压中心由早先的昆仑山前转移至拉脊山两侧。从约8Ma开始,拉脊山开始强烈阶段性幕式(3.6、2.6及1.8Ma)变形隆升,导致两侧断层以花状向盆地中心逐步扩展,断裂、掀斜和褶皱地层,盆地转变成山间盆地,并在约1.8Ma的强烈变形隆升后,黄河出现,紧接着形成上千米深切河谷和7级阶地,高原东北部现今构造地貌沉积格局最终形成。上述盆地形成演化过程总体揭示出印度板块碰撞早期最远端的高原东北部就已经开始变形隆升响应,这个过程阶段性由弱至强,至8Ma以来达到最大,反映了高原南北的同步变形隆升但幅度不同的动力学过程与形成模式,可能指示了脆性上地壳块体间柔性变形、块体内刚性挤压破裂变形和塑性下地壳连续变形增厚与流动的共同作用机制。  相似文献   

8.
青藏高原新生代形成演化的整合模型——来自火成岩的约束   总被引:28,自引:8,他引:28  
深部过程是青藏高原演化的主导因素,其他地质过程都可以看作是对深部过程的响应。因此,一个构造旋回(阶段)的地球动力学事件链可以概括为深部地质过程—幔源岩浆活动—壳源岩浆活动—陆壳增厚—地表隆升—表层剥蚀与沉积,其中幔源岩浆活动的研究成为追索青藏高原演化历史的关键环节。据此,青藏高原演化的关键性时间坐标为80、45、27、17、9和4Ma。青藏高原新生代火成岩具有三种展布形式:与雅鲁藏布缝合带平行的岩浆带、沿深大断裂展布的岩浆带和藏北离散性岩浆分布区,它们分别受控于大陆碰撞、大规模走滑和岩石圈拆沉构造体制,且都受控于印度—亚洲软流圈汇聚过程。据此,文中提出了一个描述青藏高原演化的整合模型:南北向地幔对流汇聚控制了岩石圈块体的相对运动,并最终导致印度—亚洲大陆的碰撞和沿碰撞带的大规模岩浆活动;碰撞之初(白垩纪末期),大陆岩石圈块体的刚性属性有利于应力的远程传递和块体旋转,沿块体边界分布的大型走滑断裂控制了岩浆活动的发生;随着挤压过程的持续进行,岩石圈块体的受热和变形,高原岩石圈的重力不稳定性增加,最终导致拆沉作用和软流圈物质的大规模上涌以及藏北高原的离散性岩浆活动。在高原演化中,岩石圈拆沉作用具有重要意义,许多地质事件的发生都与此有关。同时,软流圈的汇聚还导致软流圈物质的向东挤出,并因此造成青藏高原岩石圈的向东挤出和晚新生代的伸展构造。  相似文献   

9.
西秦岭武都-岷县地区位于青藏高原东北缘,是中国两大构造地貌单元的转换过渡带。构造地貌研究表明,该地区发育四级夷平面,分别是Ⅰ级夷平面(山顶面)、Ⅱ级夷平面(主夷平面)和Ⅲ、Ⅳ级夷平面(剥蚀面),分别形成于 K2-E3之前、3.6Ma、2.5Ma、1.8Ma。主要河流发育4-7级基座阶地,并且四级及其以下低级阶地的特征具有相似性。夷平面和阶地的高程变化,指示了该地区地壳的隆升具有多阶段性和不均匀性,3.6Ma以来平均隆升速率在0.42- 0.57mm/a,3.6-1.8Ma是地壳快速隆升期,1.8Ma以来隆升速度减缓,但晚更新世(0.15Ma)以来,隆升明显加速,显示出青藏高原目前正处于新的加速隆升期。  相似文献   

10.
青藏高原分布有羌塘—囊谦—滇西和冈底斯两条新生代钾质-超钾质火山岩带。羌塘—囊谦—滇西超钾质岩浆活动的峰值时间为40~30Ma,主体岩石具有Ⅰ型超钾质岩的高MgO和低CaO、Al2O3含量特征;30~24Ma期间羌塘中、西部出现Ⅲ型钾质-超钾质岩浆活动,主体岩石以贫SiO2、高CaO、Al2O3和低MgO/CaO为特征。冈底斯新生代超钾质火山岩也显示I型超钾质岩的高MgO和低CaO、Al2O3含量特征,其形成时间为25~12Ma。综合超钾质岩石的实验资料,可知区内I型超钾质岩的源区以富硅、富钾流(熔)体交代形成的金云母方辉橄榄岩为主;Ⅲ型钾质-超钾质岩浆源区则以斜辉橄榄岩地幔为主。囊谦—滇西Ⅰ型超钾质岩带空间上严格受红河走滑构造带所控制,40~28Ma出现I型超钾质岩浆活动,16Ma转变为OIB型钾质火山岩。岩浆源区从岩石圈地幔向软流圈演变,暗示大型走滑断裂引起的岩石圈地幔减薄和软流圈上涌是导致交代岩石圈地幔金云母分解熔融产生区内I型超钾质岩浆的主控因素。羌塘中部35~34Ma有软流圈来源为主的钠质碱性玄武岩岩浆的喷发,30~24Ma转变为以岩石圈地幔为主要来源的Ⅲ型钾质-超钾质岩浆活动,岩浆源区从软流圈向岩石圈迁移,指示软流圈上涌伴随的富CO2流(熔)体活动是导致古交代岩石圈地幔升温熔融产生Ⅲ型钾质-超钾质岩浆的主控因素,软流圈上涌可能是俯冲板片断离或岩石圈地幔拆沉作用的结果。  相似文献   

11.
青藏高原岩石圈三维结构及高原隆升的液压机模型   总被引:5,自引:3,他引:5       下载免费PDF全文
青藏地区可以昆仑断裂和雅鲁藏布缝合线为界分为3个岩石圈地球物理特征各不相同的区域:青海高原、藏北高原和藏南高原。青海高原位于昆仑山脉以北,是重力高和重力低毗连出现的盆山结构。藏南高原位于雅鲁藏布江以南,是印度板块分布的地区,其上是印度板块的陆缘沉积。它的地壳结构是一个向南运动的逆冲推覆系统。INDEPTH反射剖面在藏南发现的主喜马拉雅逆冲断层(MHT)与宽角反射地震扇形剖面得到的T4震相反射面完全吻合。两种地震测深方法得到的结果之间不存在矛盾。T4震相在高喜马拉雅地区没有显示,MHT向南延伸到高喜马拉雅只是一个推论,因而MHT是否为印度板块的俯冲带仍有待于获取新的证据。在昆仑山脉以南到雅鲁藏布缝合带为藏北高原,是广泛发生局部熔融的强流变岩石圈。局部熔融地区呈漏斗状。在藏北广泛存在的深度为15~20km的上部地壳内的低速层是一个最富于流变性能的局部熔融层,它的埋藏深度平坦稳定,可能含大量水质流体。紧挨着上述上部壳内局部熔融层,在藏北岩石圈大范围出现分布不均匀的网状局部熔融。局部熔融体的底部从雅鲁藏布江地区的80km向北逐步加深到200km。漏斗的漏管处位于羌塘—可可西里。藏北局部熔融体的形成是由于印度板块向北运移,受到亚洲板块的阻挡,沿雅鲁藏布缝合带向青藏高原高角度俯冲,在弧后羌塘—可可西里地区产生高热流上升地幔所致。根据卫星重力异常、航空磁测、地震接收函数研究、地球化学资料以及地表地质均揭示,印度板块沿雅鲁藏布缝合带的俯冲仅发生在亚东—唐古拉一线以西的西藏西部。在亚东—唐古拉一线以东,印度板块与西藏块体间仅仅发生碰撞,但没有发生俯冲。高原的整体隆升是由液压效应所造成。青藏高原的隆升像一台液压机。印度板块对青藏俯冲过程中产生的各种应力,通过局部熔融体,传递到地壳深15~20km处的熔融层,在其下形成一个等压面。在这个等压面的驱使下,在低速层以上未被局部熔融的地壳的底部均匀受力,将它们同步向上抬升。高原隆升期后的跨塌,使上部地壳向四周流动。在青海高原,造成毗连阿尔金断裂的一系列由西南向北东方向推动的叠瓦构造。在雅鲁藏布江以南地区,形成一系列向南凸出的弧形逆冲断层。在昆仑山脉与雅鲁藏布缝合带之间,向东的流动便形成上部地壳的滑脱构造。虽然青藏高原的形成是由于印度板块的俯冲,但它的隆升机制不单纯是一个刚体力学问题,更重要的要考虑到流体的作用,简单的用以刚体假设为前提的板块学说去解释高原的隆升机制是青藏高原研究中的误区。西藏高原的深部是一个大热库,西藏热储的开发利用是一个重大的研究课题。  相似文献   

12.
 The Qinghai–Tibet Plateau uplifted >3000 m in the Quaternary period. The average rate of uplift was 1–1.1 mm/year. The uplifting has remolded the geomorphology of China. The landform in China was changed from west-low and east-high to west-high and east-low in three steps. The Qinghai-Tibet Plateau uplift is an important factor that affected the climate and the environment of China in the Quaternary period. It controls atmospheric circulation and climatic change in Asia and even the northern hemisphere, by dividing the westerlies into two branches: south and north. The plateau gradually became a heat source in summer and a cold source in winter. The uplift had a decisive effect on the formation of the East-Asia monsoon, which increased the climatic differences between the glacial period and the interglacial period. The climate and environment of China are characterized by the influences of the plateau uplift. The east of China became the south-east monsoon area, whereas the south-west became the south-west monsoon area and the north-west turned into an arid inland region. The Gobi and large-scale deserts that formed in the inland basins are ceaselessly extending. The climate of northern China became more arid as the Qinghai-Tibet Plateau continued to uplift. The Plateau uplift affected glacial evolvement and loess formation, and propelled the migration of cold- and warm-blooded animals, which differed from other regions of the world at the same latitude. Received: 30 August 1999 · Accepted: 18 April 2000  相似文献   

13.
青藏高原东北缘黄土的气候演化与高原隆升的耦合   总被引:3,自引:2,他引:3       下载免费PDF全文
通过对青藏高原东北缘的民和黄土的磁化率、粒度、CaCO3和TOC等气候载体进行综合测试分析,可以将青藏高原东北缘黄土1.90~0.70MaB.P.段划分出7个气候阶段。对民和黄土的气候分析表明,1.10MaB.P.(民和黄土的L11黄土层)前气候差异较小,冬夏季风不强,对抗性较弱,黄土古土壤发育不明显,厚度较薄;10MaB.P.后,冬夏季风对抗性迅速增强,气候差异性增强。将民和黄土与其他地区以及深海沉积物氧同位素记录进行对比可以发现,民和黄土的S8、S9和S10古土壤分别与深海氧同位素21、23和25阶段较好地对应,而L9、L10和L11则分别对应22、24和26阶段。L11黄土层以下的黄土记录与深海氧同位素记录的可比性不是很明显。同时,民和黄土的高分辨率气候记录与青藏高原的阶段性隆升有较好的耦合关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号