首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
菲律宾皮纳图博火山爆发的卫星探测分析   总被引:1,自引:0,他引:1       下载免费PDF全文
应用气象卫星的探测处理资料,揭示和探讨了1991年6月15日菲律宾皮纳图博火山爆发后火山灰和火山尘云的演变和漂移中的一些重要特征,为研究这次火山爆发对天气和气候的影响提供了卫星观测分析信息。  相似文献   

2.
The climate changes that occured following the volcanic eruption of Mount Pinatubo in the Phillippines on 15 June 1991 have been simulated using the ARPEGE atmosphere general circulation model (AGCM). The model was forced by a reconstructed spatial-time distribution of stratospheric aerosols intended for use in long climate simulations. Four statistical ensembles of the AGCM simulations with and without volcanic aerosols over a period of 5 years following the eruption have been made, and the calculated fields have been compared to available observations. The model is able to reproduce some of the observed features after the eruption, such as the winter warming pattern that was observed over the Northern Hemisphere (NH) during the following winters. This pattern was caused by an enhanced Equator-to-pole temperature gradient in the stratosphere that developed due to aerosol heating of the tropics. This in turn led to a strengthening of the polar vortex, which tends to modulate the planetary wave field in such a way that an anomalously positive Arctic Oscillation pattern is produced in the troposphere and at the surface, favouring warm conditions over the NH. During the summer, the model produced a more uniform cooling over the NH.  相似文献   

3.
With the gradual yet unequivocal phasing out of ozone depleting substances(ODSs), the environmental crisis caused by the discovery of an ozone hole over the Antarctic has lessened in severity and a promising recovery of the ozone layer is predicted in this century. However, strong volcanic activity can also cause ozone depletion that might be severe enough to threaten the existence of life on Earth. In this study, a transport model and a coupled chemistry–climate model were used to simulate the impacts of super volcanoes on ozone depletion. The volcanic eruptions in the experiments were the 1991 Mount Pinatubo eruption and a 100 × Pinatubo size eruption. The results show that the percentage of global mean total column ozone depletion in the 2050 RCP8.5 100 × Pinatubo scenario is approximately 6% compared to two years before the eruption and 6.4% in tropics. An identical simulation, 100 × Pinatubo eruption only with natural source ODSs, produces an ozone depletion of 2.5% compared to two years before the eruption, and with 4.4% loss in the tropics. Based on the model results,the reduced ODSs and stratospheric cooling lighten the ozone depletion after super volcanic eruption.  相似文献   

4.
本文通过比较太阳直射表和太阳光度计探测的大气柱气溶胶光学厚度,分析了从太阳直射表探测的全波段太阳直射光强信息确定大气柱气溶胶光学厚度的误差,并应用北京观象台的太阳直射表观测资料,反演得到了 1990—1993年北京大气柱气溶胶光学厚度,分析了该光学厚度月与年变化规律以及1991年菲律宾皮纳图博火山爆发对北京大气气溶胶含量的影响。本文还提出了关于有效水汽含量的一个经验关系式,用于确定水汽对太阳辐射的吸收率。  相似文献   

5.
火山活动对气候的影响   总被引:7,自引:1,他引:7       下载免费PDF全文
李靖  张德二 《气象科技》2005,33(3):193-198
重大的火山喷发对气候的影响表现为地面温度降低,由于火山喷发存在季节、纬度和强度的差异,因此喷发物的空间分布特征不同,对辐射的影响也不同,降温出现的时间和降温的幅度不一致。中高纬喷发的火山主要影响发生喷发的半球,而中低纬的喷发可影响到全球,且影响时间较长;不同季节的火山喷发后,高纬度的温度响应较低纬明显,夏季的温度响应较冬季明显。有关火山活动对降水的影响目前已有了一些研究,但由于降水序列中火山信号较弱,同时还有ENSO等其他因子的影响,客观地分辨出火山的影响较复杂,目前尚无一致结论。  相似文献   

6.
该文简要介绍了遥感气溶胶光学厚度的宽带消光法, 重点比较与分析了2001~2002年间北京地区宽带消光法和全球气溶胶探测网(AERONET)气溶胶光学厚度的探测结果.对比结果表明, 两类探测结果在无云晴天的条件下具有很好的吻合, 二者的相关系数达到90%以上.另外, 作者还针对宽带消光法反演月平均气溶胶光学厚度问题, 提出了一个减小云对反演结果影响的方法, 即月平均光学厚度约束法, 并与全球气溶胶探测网探测结果做对比分析.二者结果的一致性表明该约束方法的有效性.  相似文献   

7.
低纬和中高纬度火山爆发与我国旱涝的联系   总被引:4,自引:0,他引:4  
刘永强  李月洪  贾朋群 《气象》1993,19(11):3-7
根据500年旱涝等级资料,采用时序迭加方法,分析了低纬和中高纬火山爆发对我国降水的影响。此外,还对1600-1979年南方涛动指数的变化进行了类似的分析。结果表明,低纬和中高纬火山爆发发后全国旱涝分布型和部分地区降水变化趋势有很大差异。爆发当年华北就可能明显变旱,而次年长江流域才出现明显的降水异常。计算不明,1991年皮纳图博火山及去仙岳火山爆发与江淮特大洪涝有直接联系的可能性不大。  相似文献   

8.
平流层火山气溶胶时空传播规律及其气候效应   总被引:2,自引:1,他引:1       下载免费PDF全文
根据平流层火山气溶胶传播规律研究,该文构建了反映火山喷发强度、平流层火山气溶胶相对浓度、火山气溶胶扩散速率和反映火山爆发地理位置并且按e指数规律衰减的火山活动指数(VEI)时空分布函数,进一步建立了北半球中高纬度、南北半球低纬度和南半球中高纬度3个1945-2008年逐月火山活动指数时间序列。根据3个逐月火山活动指数时间序列分别分析了北半球中高纬度、南北半球低纬度和南半球中高纬度火山活动对于相应纬度带地面气温的影响。研究表明:无论南北半球还是热带,火山活动强时地面气温下降,火山活动弱时地面气温上升,并且地面气温对于火山活动的响应明显滞后。  相似文献   

9.
An undersea volcano at Hunga Tonga-Hunga Ha'apai (HTHH) near the South Pacific island nation of Tonga, erupted violently on 15 January 2022. Potential climate impact of the HTHH volcanic eruption is of great concern to the public; here, we intend to size up the impact of the HTHH eruption from a historical perspective. The influence of historical volcanic eruptions on the global climate are firstly reviewed, which are thought to have contributed to decreased surface temperature, increased stratospheric temperature, suppressed global water cycle, weakened monsoon circulation and El Ni?o-like sea surface temperature. Our understanding of the impacts of past volcanic eruptions on global-scale climate provides potential implication to evaluate the impact of the HTHH eruption. Based on historical simulations, we estimate that the current HTHH eruption with an intensity of 0.4 Tg SO2 injection will decrease the global mean surface temperature by only 0.004°C in the first year after eruption, which is within the amplitude of internal variability at the interannual time scale and thus not strong enough to have significant impacts on the global climate.  相似文献   

10.
Solar radiation management (SRM) has been proposed as a possible option for offsetting some anthropogenic radiative forcing, with the goal of reducing some of the associated climatic changes. There are clearly significant uncertainties associated with SRM, and even small-scale experiments that might reduce uncertainty would carry some risk. However, there are also natural and anthropogenic analogs to SRM, such as volcanic eruptions in the case of stratospheric aerosol injection and ship tracks in the case of marine cloud albedo modification. It is essential to understand what we can learn from these analogs in order to validate models, particularly because of the problematic nature of outdoor experiments. It is also important to understand what we cannot learn, as this might better focus attention on what risks would need to be solely examined by numerical models. Stratospheric conditions following a major volcanic eruption, for example, are not the same as those to be expected from intentional geoengineering, both because of confounding effects of volcanic ash and the differences between continuous and impulsive injection of material into the stratosphere. Nonetheless, better data would help validate models; we thus recommend an appropriate plan be developed to better monitor the next large volcanic eruption. Similarly, more could be learned about cloud albedo modification from careful study not only of ship tracks, but of ship and other aerosol emission sources in cloud regimes beyond the narrow conditions under which ship tracks form; this would benefit from improved satellite observing capabilities.  相似文献   

11.
北京地区对流层中上部云和气溶胶的激光雷达探测   总被引:39,自引:8,他引:39  
介绍了近年来研制的一台多波长激光雷达及其探测对流层高云和气溶胶的实验,并依据探测结果重点分析了北京2000年1月至4月对流层上部云和气溶胶在532 nm波长的消光系数分布特征.结果表明:从6 km至11 km的气溶胶光学厚度值在0.0152至0.0284之间变化,均值为0.0192.从6 km至11 km的云光学厚度值在0.014至0.23之间变化.观测到的单层高云的厚度最大为6 km.4月6日,近年来最强的一次沙尘暴袭击北京.4月7日北京地区无可见云,激光雷达探测结果表明,从4 km至10 km高度范围内,存在一层厚度约为6 km的气溶胶粒子层,消光系数峰值处于8 km附近,比晴天无云时的消光系数值约大一个数量级.估计这是一层沙尘气溶胶,系由远距离输送至北京形成的.  相似文献   

12.
中国10个地方大气气溶胶1980~1994年间变化特征研究   总被引:23,自引:3,他引:23       下载免费PDF全文
作者发展了一个从地面上太阳短波直射辐射和能见度信息综合确定大气柱气溶胶总光学厚度和平流层气溶胶光学厚度的方法,并应用这个方法从气象台站观测资料反演得到北京、昆明、喀什、上海、广州、郑州、沈阳、武汉、格尔木和乌鲁木齐等10个地方从1980到1994年间晴天气溶胶光学厚度资料,分析了这些地方气溶胶光学厚度月变化和年变化特征,并侧重分析了1982年墨西哥厄尔奇琼火山和1991年菲律宾皮纳图博火山爆发对气溶胶光学厚度的影响。  相似文献   

13.
Large volcanic eruptions, in addition to the well-known effect of producing global cooling for a year or two, have been observed to produce shorterterm responses in the climate system involving non-linear dynamical processes. In this study, we use the ECHAM2 general circulation model forced with stratospheric aerosols to test some of these ideas. Run in a perpetual-January mode, with tropical stratospheric heating from the volcanic aerosols typical of the 1982 El Chichón eruption or the 1991 Pinatubo eruption, we find a dynamical response with an increased polar night jet in the Northern Hemisphere (NH) and stronger zonal winds which extend down into the troposphere. The Azores High shifts northward with increased tropospheric westerlies at 60°N and increased easterlies at 30°N. Surface temperatures are higher both in northern Eurasia and North America, in agreement with observations for the NH winters of 1982–83 and 1991–92 as well as the winters following the other 10 largest volcanic eruptions since 1883.This paper was presented at the Second International Conference on Modelling of Global Climate Variability, held in Hamburg 7–11 September 1992 under the auspices of the Max Planck Institute for Meteorology. Guest Editor for these papers is L. Dümenil  相似文献   

14.
火山喷发和太阳活动对我国温度影响的研究   总被引:2,自引:0,他引:2  
利用特征向量分析、时序叠加分析和谱分析相结合的方法,给出了近50年来我国地面气温场中较为清晰的火山喷发和太阳活动信号。强烈的火山喷发导致全国大部分地区降温,降温最明显的时段是喷发1年多以后,并能持续约半年。除这个主信号以外,青藏高原、东南沿海和东北地区都可能出现较为复杂的温度变化。温度变化与太阳活动之间的联系更多地反映在二者的振荡关系上。  相似文献   

15.
北半球中纬度地区上层臭氧变化的合成分析研究   总被引:1,自引:1,他引:0  
应用逆转方法(C),对北半球中纬度地区8个观测质量较好的O3地面站的近30年地面遥感逆转资料进行标准处理。采用合成分析方法,对中纬度带上层O3进行了分析研究,发现上层O3总的长期演变趋势较为平坦,仅80年代初及90年代初在36km以上层O3含量有突降现象。这可能与EL Chichon大火山焊发和Pinatubo大火山爆发有较大关系。此外。在上层O3含量的长期演变过程中,还可看到准11年周期,并证实28~36km层及36km以上层O3含量季节变化位相相反。本研究结果可能对南极O3洞的形成机制及近年来O3层变浅薄的机制的认识提供依据并产生影响。    相似文献   

16.
王志恩  胡欢  陵周军 《气象学报》1996,54(4):437-446
文中提出了一种新的激光雷达测量臭氧的方法:双差分吸收方法。理论分析和数值模拟表明这种方法可以有效减小气溶胶消光和后向散射对臭氧测量的影响,从而使激光雷达在气溶胶影响严重地区测量的臭氧精度比传统差分吸收激光雷达大大提高。利用(289,313;277.1,299.1nm)或(268.4,289;277.1,299.1nm)4波长进行双差分吸收可以用于对流层大气气溶胶含量丰富或分布不均匀地区臭氧的测量。利用(299.1,341.5;308,353nm)4波长进行双差分吸收可以对火山爆发后平流层臭氧进行较精确的测量。  相似文献   

17.
A set of vertical profiles of aerosol number concentrations, size distributions and cloud condensation nuclei(CCN)spectra was observed using a passive cloud and aerosol spectrometer(PCASP) and cloud condensation nuclei counter, over the Tongliao area, East Inner Mongolia, China. The results showed that the average aerosol number concentration in this region was much lower than that in heavily polluted areas. Monthly average aerosol number concentrations within the boundary layer reached a maximum in May and a minimum in September, and the variations in CCN number concentrations at different supersaturations showed the same trend. The parameters c and k of the empirical function N = c S~kwere 539 and1.477 under clean conditions, and their counterparts under polluted conditions were 1615 and 1.42. Measurements from the airborne probe mounted on a Yun-12(Y12) aircraft, together with Hybrid Single-Particle Lagrangian Integrated Trajectory model backward trajectories indicated that the air mass from the south of Tongliao contained a high concentration of aerosol particles(1000–2500 cm~(-3)) in the middle and lower parts of the troposphere. Moreover, detailed intercomparison of data obtained on two days in 2010 indicated that the activation efficiency in terms of the ratio of NCCNto N_a(aerosols measured from PCASP) was 0.74(0.4 supersaturations) when the air mass mainly came from south of Tongliao, and this value increased to 0.83 on the relatively cleaner day. Thus, long-range transport of anthropogenic pollutants from heavily polluted mega cities,such as Beijing and Tianjin, may result in slightly decreasing activation efficiencies.  相似文献   

18.
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions.  相似文献   

19.
Terry Deshler   《Atmospheric Research》2008,90(2-4):223-ICNAA07
Stratospheric aerosol, noted after large volcanic eruptions since at least the late 1800s, were first measured in the late 1950s, with the modern continuous record beginning in the 1970s. Stratospheric aerosol, both volcanic and non-volcanic are sulfuric acid droplets with radii (concentrations) on the order of 0.1–0.5 µm (0.5–0.005 cm− 3), increasing by factors of 2–4 (10–103) after large volcanic eruptions. The source of the sulfur for the aerosol is either through direct injection from sulfur-rich volcanic eruptions, or from tropical injection of tropospheric air containing OCS, SO2, and sulfate particles. The life cycle of non-volcanic stratospheric aerosol, consisting of photo-dissociation and oxidation of sulfur source gases, nucleation/condensation in the tropics, transport pole-ward and downward in the global planetary wave driven tropical pump, leads to a quasi steady state relative maximum in particle number concentration at around 20 km in the mid latitudes. Stratospheric aerosol have significant impacts on the Earth's radiation balance for several years following volcanic eruptions. Away from large eruptions, the direct radiation impact is small and well characterized; however, these particles also may play a role in the nucleation of near tropopause cirrus, and thus indirectly affect radiation. Stratospheric aerosol play a larger role in the chemical, particularly ozone, balance of the stratosphere. In the mid latitudes they interact with both nitrous oxides and chlorine reservoirs, thus indirectly affecting ozone. In the polar regions they provide condensation sites for polar stratospheric clouds which then provide the surfaces necessary to convert inactive to active chlorine leading to polar ozone loss. Until the mid 1990s the modern record has been dominated by three large sulfur-rich eruptions: Fuego (1974), El Chichón (1982) and Pinatubo (1991), thus definitive conclusions concerning the trend of non-volcanic stratospheric aerosol could only recently be made. Although anthropogenic emissions of SO2 have changed somewhat over the past 30 years, the measurements during volcanically quiescent periods indicate no long term trend in non-volcanic stratospheric aerosol.  相似文献   

20.
The hygroscopic growth of individual aerosol particles has been measured with a Tandem Differential Mobility Analyser. The hygroscopic growth spectra were analysed in terms of diameter change with increasing RH from 20% to 85%. The measurements were carried out during the GCE cloud experiment at Kleiner Feldberg, Taunus, Germany in October and November 1990.Two groups of particles with different hygroscopic growth were observed. The less-hygroscopic group had average growth factors of 1.11, 1.04 and 1.02 for particle diameters of 50, 150 and 300 nm, respectively. The more-hygroscopic group had average growth factors of 1.34, 1.34, and 1.37 for the same particle diameters. The average fraction of less-hygroscopic particles was about 50%. Estimates of the soluble fractions of the particles belonging to the two groups are reported.Hygroscopic growth spectra for total aerosol, interstitial aerosol and cloud drop residuals were measured. A comparison of these hygroscopic growths of individual aerosol particles provides clear evidence for the importance of hygroscopic growth in nucleation scavenging. The measured scavenged fraction of particles as a function of diameter can be explained by the hygroscopic growth spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号