首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some new ideas on the interaction of the solar wind with the magnetosphere are brought forward. The mechanism of reflection of charged particles at the magnetopause is examined. It is shown that in general the reflection is not specular but that a component of momentum of the particle parallel to the magnetopause changes. A critical angle is derived such that particles whose trajectories make an angle less than it with the magnetopause enter the magnetosphere freely, so transferring their forward momentum to it. Spatially or temporally non-uniform entry of charged particles into the magnetosphere causes electric fields parallel to the magnetopause which either allow the free passage of solar wind across it or vacuum reconnection to the interplanetary magnetic field depending on the direction of the latter. These electric fields can be discharged in the ionosphere and so account qualitatively for the dayside agitation of the geomagnetic field observed on the polar caps. The solar wind wind plasma which enters the magnetosphere creates (1) a dawn-dusk electric field across the tail (2) enough force to account for the geomagnetic tail and (3) enough current during disturbed times to account for the auroral electrojets. The entry of solar wind plasma across the magnetosphere and connection of the geomagnetic to interplanetary field can be assisted by wind generated electric field in the ionosphere transferred by the good conductivity along the geomagnetic field to the magnetopause. This may account for some of the observed correlations between phenomena in the lower atmosphere and a component of magnetic disturbance.  相似文献   

2.
There is a component of the current normal to the boundary near the tangential discontinuity (the magnetopause) if the plasma is frozen in the magnetic field. On the assumption that the plasma density obeys the model of Gold's distributionnr –4, one finds that if one closes the component of the current in the ionospeere, the global system of field-aligned currents is created which is consistent with the Triad data on the value, direction, and the distribution with the local time.  相似文献   

3.
The suprathermal plasma analyser on the geostationary satellite Geos-2 can identify magnetospheric, boundary layer and magnetosheath electron distributions around the dayside equatorial magnetopause. As examples, data from two days when magnetopause crossings occurred, 28 August 1978 and 12 November 1978, are discussed. The boundary layer electrons are intermediate in temperature and density between those in the ring current and the magnetosheath but cannot be a simple admixture of the two populations. The transition from boundary layer to magnetosheath electrons is often sudden. We believe it to be coincident with the magnetopause where the magnetic field changes from terrestrial to interplanetary.  相似文献   

4.
The geometry of the open field line region in the polar region is computed for a variety of the interplanetary magnetic field (IMF) orientation. The open field line region can be identified as the area bounded by the auroral oval, namely the polar cap. The polar cap geometry varies considerably with the orientation of the IMF and magnitude, particularly when the IMF Bz component is positive and large. The corresponding exit points of the open field lines on the magnetopause are also examined. The results will be a useful guide in interpreting various upper atmospheric phenomena in the highest latitude region of the Earth and also in observing chemical releases outside the magnetopause.  相似文献   

5.
Reconnection involves singular lines called X-lines on the day and night sides of the magnetosphere, and the reconnection rate is proportional to the component of the electric field along the X-line. Although there is some indirect support for this model, nevertheless direct support is totally lacking. However, there are two distinct pieces of clearly contradictory observational evidence on the dayside. First is the failure to account for the implied energy dissipation by the magnetopause current, over 1011 W, which should be easily observable as heating or enhanced flow of the plasma near the magnetopause. In marked contrast to this prediction, HEOS-2 satellite data reveal a plasma with decreased energy density and reduced flow. Second, the boundary of closed magnetic field lines is in the wrong location. In the reconnection process the plasma outflow would cut across open field lines toward higher latitudes; there should be a band of open field lines equatorward of the cleft. Observations of trapped energetic particles indicate closed field lines within the entry layer and cleft. Either one of these pieces of evidence is sufficient by itself to require drastic revision, even rejection, of the reconnection model. There is also contradictory evidence on the night side. The last closed field line capable of trapping energetic particles is poleward of auroral arcs. The implication is that the X-line is at the distant magnetopause, and not in the plasma sheet. Consequently, even if the reconnection process were operative at the nightside X-line, it would be isolated from steady state plasma sheet and auroral processes. On the other hand, substorm phenomena, in which stored magnetic energy is converted into particle kinetic energy, necessarily involve an induced electric field; that is excluded in theories of the reconnection process in which it is assumed that curl E = 0. Nevertheless, the observed easy access of energetic solar flare particles to the polar caps, and especially the preservation of interplanetary anisotropies as differences between the two polar caps, argues strongly for an open magnetosphere, with interconnection between geomagnetic and inter-planetary magnetic field lines. It is suggested that the resolution of this apparent paradox involves electric fields parallel to the magnetic field lines somewhere on the dawn and dusk sides of the magnetosphere, with an equipotential dayside magnetopause.  相似文献   

6.
We present a new model of the jovian magnetosphere in which the flaring of the magnetopause boundary can be varied. Magnetopause flaring is expected to vary due to changing conditions in the upstream interplanetary medium, related both to the dynamic pressure of the solar wind, and to changes in the direction of the interplanetary magnetic field. The model includes a tilted dipole field, which is screened by the magnetopause, a tail field current system, and the field of a screened equatorial current disc.  相似文献   

7.
A quantitative magnetospheric magnetic field model has been calculated in three dimensions. The model is based on an analytical solution of the Chapman-Ferraro problem. For this solution, the magnetopause was assumed to be an infinitesimally thin discontinuity with given geometry. The shape of the dayside magnetopause is in agreement with measurements derived from spacecraft boundary crossings.The magnetic field of the magnetopause currents can be derived from scalar potentials. The scalar potentials result from solutions of Laplace's equation with Neumann's boundary conditions. The boundary values and the magnetic flux through the magnetopause are determined by all magnetic sources which are located inside and outside the magnetospheric cavity. They include the Earth's dipole field, the fields of the equatorial ring current and tail current systems, and the homogeneous interplanetary magnetic field. In addition, the flux through the magnetopause depends on two constants of interconnection which provide the possibility of calculating static interconnection between magnetospheric and interplanetary field lines. Realistic numerical values for both constants have been derived empirically from observed displacements of the polar cusps which are due to changes in the orientation of the interplanetary field. The transition from a closed to an open magnetosphere and vice versa can be computed in terms of a change of the magnetic boundary conditions on the magnetopause. The magnetic field configuration of the closed magnetosphere is independent of the amount and orientation of the interplanetary field. In contrast, the configuration of the open magnetosphere confirms the observational finding that field line interconnection occurs primarily in the polar cusp and high latitude tail regions.The tail current system reflects explicitly the effect of dayside magnetospheric compression which is caused by the solar wind. In addition, the position of the plasma sheet relative to the ecliptic plane depends explicitly on the tilt angle of the Earth's dipole. Near the tail axis, the tail field is approximately in a self-consistent equilibrium with the tail currents and the isotropic thermal plasma.The models for the equatorial ring current depend on the Dst-parameter. They are self-consistent with respect to measured energy distributions of ring current protons and the axially symmetric part of the magnetospheric field.  相似文献   

8.
The topic of this report is that of the influence of noise, and of the finite length and width of the tail on the behaviour of the current sheet.The presence of a weak magnetic field linking through the current sheet leads to plasma containment and counterstreaming, with the consequence that both the plasma temperature and density are increased in the vicinity of the current sheet. The effect of these changes on the relationship between steady bulk parameters is discussed.The finite length of the tail significantly modifies the equilibrium situation in the near Earth tail, for streams mirroring at the Earthwards end of field lines lead to a reduction of merging. The finite width of the tail restricts the region of reduced merging rate to a triangular shaped area extending from the dusk magnetopause into the tail. The finite tail width is also important in the more distant tail, where magnetosheath particles which penetrate the magnetopause ends of the current sheet may become major current carriers, especially if Bz, is small and northwards.Finally, it is shown that the above factors, together with a non-adiabatic current sheet, are important to our understanding of the temporal behaviour of the tail.  相似文献   

9.
The role of the ionospheric conductance in the solar wind-magnetosphere coupling is studied using global MHD simulations. The simulations with varying conductance and a constant solar wind input show that the field-aligned currents, whose magnitude depends on the ionospheric conductance, affect the size of the magnetopause at the flanks by increasing the local magnetic pressure and thus altering the surface equilibrium at the magnetopause. A current system that generates the magnetic stresses required to account for the location and geometrical structure of the magnetosphere observed in the simulations is proposed.  相似文献   

10.
A simple method is proposed to investigate the stability of a charge neutral magnetopause current sheet with respect to the tearing-mode instability. This method may serve as a useful tool in understanding the processes of local opening of the closed magnetosphere.  相似文献   

11.
We study several high kinetic energy density jets observed during a traversal of the dayside magnetosheath by the Cluster spacecraft on March 17, 2001, at various distances from the magnetopause, generally characterised by anomalously high values of the local magnetosonic Mach number. We concentrate on two jets observed just outside the magnetopause, the first almost parallel to the GSM x axis and the second directed northward-tailward along the nominal magnetopause surface. We present evidence that none of them can be ascribed to magnetic reconnection at the magnetopause and show that the magnetopause is severely deformed by the jets, so that its local normal forms an angle of 97° with the quiet time magnetopause normal. On these grounds, we suggest that the indentation of the magnetopause is caused by an anti-sunward jet ramming into the magnetopause slightly equatorward of the northern cusp and that the northward-tailward jet is the result of its reflection at the deformed magnetopause. Finally, we briefly discuss our results by comparing them with past studies of events which in some way recall the one analysed herein.  相似文献   

12.
The UKS spacecraft operated from August 1984 through to January 1985. During that time, it made multiple crossings of the magnetopause in local time sectors extending from mid-afternoon to just behind the dawn meridian. We have surveyed the magnetometer records from these magnetopause encounters and have compiled a catalogue of flux transfer events (FTEs using criteria identical to those employed by Rijnbeek et al. (1984, J. Geophys. Res. 89, 786) in their survey of ISEE spacecraft magnetometer data. Using the catalogue, we find that FTE occurrence determined from the UKS data set is substantially less than that detected using data from the early ISEE 1/2 spacecraft orbits. The UKS data set shows a correlation between FTE occurrence and southward external magnetic field, but there are several instances of passes in which no FTEs are detected but for which the external field was unam- biguousluy southward. The passes with the largest number of events are those for which the field outside the magnetopause has a large BM component. We conclude that the lower latitude of the UKS encounters is responsible for the discrepancy with the ISEE occurrence. The most likely source region appears to be near the subsolar region.  相似文献   

13.
The solar wind is a magnetized flowing plasma that intersects the Earth's magnetosphere at a velocity much greater than that of the compressional fast mode wave that is required to deflect that flow. A bow shock forms that alters the properties of the plasma and slows the flow, enabling continued evolution of the properties of the flow on route to its intersection with the magnetopause. Thus the plasma conditions at the magnetopause can be quite unlike those in the solar wind. The boundary between this “magnetosheath” plasma and the magnetospheric plasma is many gyroradii thick and is surrounded by several boundary layers. A very important process occurring at the magnetopause is reconnection whereby there is a topological change in magnetic flux lines so that field lines can connect the solar wind plasma to the terrestrial plasma, enabling the two to mix. This connection has important consequences for momentum transfer from the solar wind to the magnetosphere. The initiation of reconnection appears to be at locations where the magnetic fields on either side of the magnetopause are antiparallel. This condition is equivalent to there being no guide field in the reconnection region, so at the reconnection point there is truly a magnetic neutral or null point. Lastly reconnection can be spatially and temporally varying, causing the region of the magnetopause to be quite dynamic.  相似文献   

14.
The plasma flow in the equatorial plane of the magnetosphere is examined within the framework of a one-dimensional model in which all quantities are supposed to depend only on the distance along the Sun-Earth axis. The following models are considered: (1) the gasdynamical model in which the Ampère force is ignored, (2) the magnetohydrodynamical model in which the normal component of the Ampère force on the magnetopause is taken into account. The flow regime is calculated in the region including two regions: (1) the layer of the return flow where flow velocity is directed from the Sun, (2) the region of convection where the velocity is directed toward the Sun - on the assumption that the form of the magnetopause and the distribution of the solar wind pressure on the magnetopause are known.The following physical mechanisms are taken into account: (1) the appearance of a centrifugal force owing to the magnetopause curvature, the centrifugal force partly compensating for the solar wind pressure; (2) the existence of the critical point which is analogous to the point of transition through the local sound velocity in the Laval nozzle or in the Parker model of the solar corona. The thickness of the layer of the return flow and the velocity of convection in the magnetosphere are calculated; and the following peculiarities are found: (1) in the gasdynamical model the convection regime is only possible with high velocities corresponding to the substorm, (2) in the magnetohydrodynamic model the convection velocity and the thickness of the layer of the return flow are reduced; the reduction being connected to the fact that the pressure of the solar wind is partially compensated for by the jump of the magnetic pressure on the magnetopause.  相似文献   

15.
Low-energy particle trajectories in an idealized magnetotail magnetic field are investigated to determine the accessibility of magnetosheath protons and electrons to the plasma sheet along the flanks of the tail magnetopause. The drift motion of the positively (negatively) charged particles incident on the dawn (dusk) magnetotail flank causes such particles to penetrate deeper into the magnetotail. For certain combinations of particle energy, incident velocity vector and initial penetration point on the tail magnetopause, the incident particles can become trapped in the plasma sheet, after which their net drift motion then provides a current capable of supporting the entire observed magnetotail field. The results further indicate that the bulk of the solar wind plasma just outside the distant tail boundary, which streams preferentially in a direction along the magnetopause away from the Earth at velocities around 400 km s?1, can be caught up in the tail if the initial penetration point is within about 2RE, of the quasi-neutral sheet. It is suggested that a large fraction of the magnetotail plasma is composed of former solar wind particles which have penetrated the magnetospheric boundary at the tail flanks.  相似文献   

16.
A possible mechanism for the generation of a reverse fast shock in the magnetosheath in the solar wind flow around the Earth’s magnetosphere is considered. It is shown that such a shock can emerge through the breaking of a nonlinear fast magnetosonic compression wave reflected from the magnetopause toward the bow shock rear. In this case, the magnetopause is represented as a tangential discontinuity with a zero normal magnetic field component at it and the mechanism under consideration is assumed to be secondary with respect to the sudden disturbance of the bow shock-Earth’s magnetosphere system by a nonstationary solar wind shock. A possible confirmation of the process under study by in-situ SC3 experimental observations of the bow shock front motion on the Cluster spacecraft is pointed out.  相似文献   

17.
The wide-spread belief that the neutral sheet current in Earth's magnetotail creates an accumulation of charge at the boundary with the magnetosheath is erroneous. Current continuity is maintained by the magnetization current on the upper and lower surfaces of the magnetotail. Hence no electric fields arise from charge separation supposedly brought about by the flow of particles between the neutral sheet and the magnetosheath. Claims to the contrary are based on the oversight of forgetting the current on the magnetopause.  相似文献   

18.
《Planetary and Space Science》1999,47(8-9):1101-1109
The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiters rotational equator and the Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and the magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine the current sheet at radial distances from 24–55 Jovian radii. We find that the magnetic structure very much resembles the structure seen at planetary magnetopause and tail current sheet crossings. The magnetic field variation is mainly linear with little rotation of the field direction. At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for the explosive reconnection observed at even greater radial distances on the nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in the more distant magnetodisk.  相似文献   

19.
Magnetic field variations in the noon-midnight plane during the magnetospheric substorm are studied in terms of changes of three current systems: the dynamo-driven current on the magnetopause, the cross-tail current and the field-aligned current-auroral electrojet system. The field-aligned current is assumed to be generated as a result of interruption and subsequent diversion of the cross-tail current to the ionosphere. It is concluded that the available observations are consistent with a large increase of the three currents.  相似文献   

20.
A magnetospheric field model is presented in which the usually assumed toroidal ring current is replaced by a circular disk current of finite thickness that extends from the tail to geocentric distances less than 3R E. The drastic departure of this model from the concept of the conventional ring current lies in that the current is continuous from the tail to the inner magnetosphere. This conceptual change was required to account for the recent results of analysis of the OGO 3 and 5 magnetic field observations. In the present model the cross-tail current flows along circular arcs concentric with the Earth and completes circuit via surface currents on the magnetopause. Apart from these return currents in the tail magnetopause, Mead's (1964) model is used for the field from the magnetopause current. The difference scalar field, ΔB, defined as the difference between the scalar field calculated from the present model and the magnitude of the dipole field is found to be in gross agreement with the observed ΔB (i.e. the observed scalar field minus a scalar reference geomagnetic field). An updated version of the ΔB contours from the OGO 3 and 5 observations, which is used for the comparison, is presented in this paper. Significant differences in details exist, however, between the model and the observed results. These differences will provide a guide for making modifications in the equatorial current system in future models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号