共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of deformation on radiogenic argon (40Ar∗) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ∼15 mm in length and 6.25 mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10 kb and a temperature of 600 °C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas.Infrared (IR) laser (CO2) heating of individual 1.5-2.5 mm diameter grains of muscovite and biotite separated from the undeformed granite yield well-defined 40Ar/39Ar plateau ages of 311 ± 2 Ma (2σ). Identical experiments on single grains separated from the experimentally deformed granite yield results indicating 40Ar∗ loss of 0-35% in muscovite and 2-3% 40Ar∗ loss in biotite. Intragrain in situ ultraviolet (UV) laser ablation 40Ar/39Ar ages (±4-10%, 1σ) of deformed muscovites range from 309 ± 13 to 264 ± 7 Ma, consistent with 0-16% 40Ar∗ loss relative to the undeformed muscovite. The in situ UV laser ablation 40Ar/39Ar ages of deformed biotite vary from 301 to 217 Ma, consistent with up to 32% 40Ar∗ loss. No spatial correlation is observed between in situ40Ar/39Ar age and position within individual grains. Using available argon diffusion data for muscovite the observed 40Ar∗ loss in the experimentally treated muscovite can be utilized to predict average 40Ar∗ diffusion dimensions. Maximum 40Ar/39Ar ages obtained by UV laser ablation overlap those of the undeformed muscovite, indicating argon loss of <1% and an average effective grain radius for 40Ar∗ diffusion ?700 μm. The UV laser ablation and IR laser incremental 40Ar/39Ar ages indicating 40Ar∗ loss of 16% and 35%, respectively, are consistent with an average diffusion radius ?100 μm. These results support a hypothesis of grain-scale 40Ar∗ diffusion distances in undeformed mica and a heterogeneous mechanical reduction in the intragrain effective diffusion length scale for 40Ar∗ in deformed mica. Reduction in the effective diffusion length scale in naturally deformed samples occurs most probably through production of mesoscopic and submicroscopic defects such as, e.g., stacking faults. A network of interconnected defects, continuously forming and annealing during dynamic deformation likely plays an important role in controlling both 40Ar∗ retention and intragrain distribution in deformed mica. Intragrain 40Ar/39Ar ages, when combined with estimates of diffusion kinetics and distances, may provide a means of establishing thermochronological histories from individual micas. 相似文献
2.
由于40Ar/39Ar定年方法在技术上极具复杂性,目前,国内在开展干旱区研究中很少使用风化矿物定年研究手段。重点介绍黄钾铁矾矿物40Ar/39Ar定年法的基本流程,并针对该方法的技术问题初步探讨了解决办法。研究表明,科学的野外采集样品、仔细的挑选矿物并综合采用多种测试手段(X衍射、扫描电镜、电子探针)进行监测可以获得纯净的风化矿物,并结合精细的40Ar/39Ar阶段加热技术,能够获得比较可靠的风化矿物40Ar/39Ar年龄。 相似文献
3.
4.
New 40Ar/39Ar thermochronology results and thermal modeling support the hypothesis of Hollister et al. (2004), that reheating of the mid-Cretaceous Ecstall pluton by intrusion of the Coast Mountains Batholith (CMB) was responsible for spatially variable remagnetization of the Ecstall pluton. 40Ar/39Ar ages from hornblende and biotite from 12 locations along the Skeena River across the northern part of the Ecstall pluton decrease with proximity to the Quottoon plutonic complex, the nearest member of the CMB to the Ecstall pluton. The oldest 40Ar/39Ar ages are found farthest from the Quottoon plutonic complex, and are 90 ± 3 Ma for hornblende, and 77.9 ± 1.2 Ma for biotite. The youngest 40Ar/39Ar ages are found closest to the Quottoon plutonic complex, and are 51.6 ± 1.2 Ma for hornblende, and 45.3 ± 1.7 Ma for biotite. No obvious relationship between grain size and age is seen in the Ecstall pluton biotites. Spatial trends in 40Ar/39Ar ages are consistent with model results for reheating by a thermal wall at the location of the Quottoon plutonic complex. Although no unique solution is suggested, our results indicate that the most appropriate thermal history for the Ecstall pluton includes both reheating and northeast side up tilting of the Ecstall pluton associated with intrusion of the Quottoon plutonic complex. Estimates of northward translation from shallow paleomagnetic inclinations in the western part of the Ecstall pluton are reduced to ∼3000 km, consistent with the Baja-BC hypothesis, when northeast side up tilting is accounted for. 相似文献
5.
Zoning and recrystallization of phengitic micas: implications for metamorphic equilibration 总被引:2,自引:0,他引:2
T. J. Dempster 《Contributions to Mineralogy and Petrology》1992,109(4):526-537
White micas (phengites) in the metasediments of the Scottish Dalradian display a large range of compositions within single samples. The variations in the composition of these phengites are strongly controlled by their structural age, with early fabrics containing a paragonite-poor, celadonite-rich phengite whereas in later fabrics the micas are generally paragonite-rich and celadonite-poor. Retrograde phengite growth, identified using back scattered electron imaging, occurs as celadonite-rich rims on micas within all existing fabrics and appears to be preferentially developed along existing white mica-plagioclase grain boundaries. The presence of these chemically distinct phengite populations within single samples implies that chemical exchange between the individual micas was inefficient. It is proposed that diffusion-controlled exchange reactions in phengites have relatively high closure temperatures below which major element exchange is effectively impossible. This closed system behaviour of micas questions the ease with which phengites may equilibrate with other phases during prograde greenschist and lower amphibolite facies metamorphism. Many of the chemical variations preserved in phengites from such metamorphic rocks may reflect deformation/recrystallization controlled equilibria. 相似文献
6.
The island of Seram, eastern Indonesia, experienced a complex Neogene history of multiple metamorphic and deformational events driven by Australia–SE Asia collision. Geological mapping, and structural and petrographic analysis has identified two main phases in the island's tectonic, metamorphic, and magmatic evolution: (1) an initial episode of extreme extension that exhumed hot lherzolites from the subcontinental lithospheric mantle and drove ultrahigh-temperature metamorphism and melting of adjacent continental crust; and (2) subsequent episodes of extensional detachment faulting and strike-slip faulting that further exhumed granulites and mantle rocks across Seram and Ambon. Here we present the results of sixteen 40Ar/39Ar furnace step heating experiments on white mica, biotite, and phlogopite for a suite of twelve rocks that were targeted to further unravel Seram's tectonic and metamorphic history. Despite a wide lithological and structural diversity among the samples, there is a remarkable degree of correlation between the 40Ar/39Ar ages recorded by different rock types situated in different structural settings, recording thermal events at 16 Ma, 5.7 Ma, 4.5 Ma, and 3.4 Ma. These frequently measured ages are defined, in most instances, by two or more 40Ar/39Ar ages that are identical within error. At 16 Ma, a major kyanite-grade metamorphic event affected the Tehoru Formation across western and central Seram, coincident with ultrahigh-temperature metamorphism and melting of granulite-facies rocks comprising the Kobipoto Complex, and the intrusion of lamprophyres. Later, at 5.7 Ma, Kobipoto Complex rocks were exhumed beneath extensional detachment faults on the Kaibobo Peninsula of western Seram, heating and shearing adjacent Tehoru Formation schists to form Taunusa Complex gneisses. Then, at 4.5 Ma, 40Ar/39Ar ages record deformation within the Kawa Shear Zone (central Seram) and overprinting of detachment faults in western Seram. Finally, at 3.4 Ma, Kobipoto Complex migmatites were exhumed on Ambon, at the same time as deformation within the Kawa Shear Zone and further overprinting of detachments in western Seram. These ages support there having been multiple synchronised episodes of high-temperature extension and strike-slip faulting, interpreted to be the result of Western Seram having been ripped off from SE Sulawesi, extended, and dragged east by subduction rollback of the Banda Slab. 相似文献
7.
The Brixen Quartzphyllite, basement of the Southern Alps (Italy), consists of metasediments which had suffered progressive deformation and low grade metamorphism (p
max4 kbar, T
max375±25° C) during the Palaeozoic. It has been excavated by pre-Permian erosion, buried again beneath a pile of Permo-mesozoic to Cainozoic sediments (estimated T
max150° C), and is now exposed anew due to late Alpine uplift and erosion. The behavior of the K-Ar system of white micas is investigated, taking advantage of the narrow constraints on their thermal history imposed by the geological/stratigraphic reference systems.The six structurally and petrographically differing samples come from a single outcrop, whose position is roughly two kilometers beneath the Permian land-surface. White mica concentrates from five grain size fractions (<2 , 2–6 , 6–20 , 20–60 , 60–75 ) of each sample have been analyzed by the conventional K-Ar method, four selected concentrates additionally by the 40Ar/39Ar stepwise heating technique; furthermore, Ar content and isotopic composition of vein quartz were determined.The conventional ages of the natural grain size fractions (20–60 , 60–75) are in the range 316±8 Ma, which corresponds to the 40Ar/39Ar plateau age of 319.0±5.5 Ma within the error limits. The finer grain size fractions yield significantly lower ages, down to 233 Ma for fractions <2 . Likewise low apparent ages (down to 83 Ma) are obtained for the low temperature 40Ar/39Ar degassing steps.There is no correlation between microstructural generation of white mica prevailing in the sample and apparent age. This favours an interpretation of the 316±8 Ma values as cooling age; progressive deformation and metamorphism must be respectively older and their timing cannot be resolved by these methods. The data preclude any significant influence of a detrital mica component as well as of excess argon.The lower ages found for the fine grain-size fractions (respectively the low-T degassing steps) correspond to a near-surface period (p-T-minimum); the values are geologically meaningless. The effect is interpreted to result from partial Ar loss due to reheating during Mesozoic-Cainozoic reburial. A model based on diffusion parameters derived from the outgassing experiments and Dodson's (1979) equation yields a closure temperature of 284±40 °C for a cooling rate of 18° C/Ma. Furthermore, this model suggests that the observed argon loss of up to 5% may in fact have been induced by reheating to 150 °C for 50 Ma. 相似文献
8.
40Ar/39Ar年代学数据处理软件ArArCALC简介 总被引:2,自引:0,他引:2
ArArCALC是40Ar/39Ar法数据处理专业软件,A.A.P. Koppers以Visual Basic编写的Microsoft Excel"宏",在Windows 95-Vista系统上均可运行.经过不断改进,ArArCALC已经发展成为一种功能强大且使用方便的软件,可全面进行40Ar/39Ar数据计算,包括回归时间零点值、坪年龄、全熔年龄和等时线年龄计算并自动作图,给出分析误差、内部误差和外部误差.更重要的是,ArArCALC能将原始数据、各种参数、计算结果和图件以可编辑的Excel格式给出.ArArCALC交互性强,用户可随时对有关参数进行修改,重新计算,提高了数据处理效率.鉴于上述优点,特此引荐ArArCALC. 相似文献
9.
10.
桂北地区发育较多的钾镁煌斑岩脉,可能为该区近源金刚石重砂矿的母岩,对于其形成时代一直是长期争议悬而未决的重要地质问题。本文研究表明,融水地区金云钾镁煌斑岩的金云母(斑晶、基质) 40 Ar- 39 Ar冷却封闭年龄为203~204 Ma,表明其形成于晚三叠世。岩石SiO 2为55. 68%~56. 85%,高钾(K 2O/Na 2O=1. 87~3. 06)、高Mg # (71. 90~73. 20)、轻稀土富集、重稀土相对亏损,轻重稀土分异明显,Eu略亏损,富集大离子亲石元素,亏损高场强元素,地球化学特征表明其来源于俯冲流体交代的富集地幔特征。上述研究表明,扬子克拉通东南缘桂北地区中生代岩石圈地幔为经历俯冲流体交代的富集地幔,并于晚三叠世经历了重要的岩石圈伸展减薄构造事件,其形成可能与古太平洋板块平板式俯冲有关。 相似文献
11.
Lothar Ratschbacher Christian Dingeldey Christine Miller Bradley R. Hacker Michael O. McWilliams 《Tectonophysics》2004,394(3-4):155-170
New 40Ar/39Ar geochronology places time constraints on several stages of the evolution of the Penninic realm in the Eastern Alps. A 186±2 Ma age for seafloor hydrothermal metamorphic biotite from the Reckner Ophiolite Complex of the Pennine–Austroalpine transition suggests that Penninic ocean spreading occurred in the Eastern Alps as early as the Toarcian (late Early Jurassic). A 57±3 Ma amphibole from the Penninic subduction–accretion Rechnitz Complex dates high-pressure metamorphism and records a snapshot in the evolution of the Penninic accretionary wedge. High-pressure amphibole, phengite, and phengite+paragonite mixtures from the Penninic Eclogite Zone of the Tauern Window document exhumation through ≤15 kbar and >500 °C at 42 Ma to 10 kbar and 400 °C at 39 Ma. The Tauern Eclogite Zone pressure–temperature path shows isothermal decompression at mantle depths and rapid cooling in the crust, suggesting rapid exhumation. Assuming exhumation rates slower or equal to high-pressure–ultrahigh-pressure terrains in the Western Alps, Tauern Eclogite Zone peak pressures were reached not long before our high-pressure amphibole age, probably at ≤45 Ma, in accordance with dates from the Western Alps. A late-stage thermal overprint, common to the entire Penninic thrust system, occurred within the Tauern Eclogite Zone rocks at 35 Ma. The high-pressure peak and switch from burial to exhumation of the Tauern Eclogite Zone is likely to date slab breakoff in the Alpine orogen. This is in contrast to the long-lasting and foreland-propagating Franciscan-style subduction–accretion processes that are recorded in the Rechnitz Complex. 相似文献
12.
拉萨地体中的印支造山事件及年代学证据 总被引:7,自引:2,他引:7
通过拉萨地体中松多群变质岩系的变形构造、韧性剪切带的研究,剪切带中石英组构的EBSD测定,韧性剪切带中白云母40At-39Ar测年结果(220~230Ma),以及晚三叠世花岗闪长岩和二长花岗岩岩体侵入松多群的证据,提出拉萨地体松多群经历了印支期造山事件的认识,这一事件为二叠纪古特提斯洋盆深俯冲(代表标志为拉萨榴辉岩带)之后南、北拉萨地体碰撞的结果.拉萨地体中印支造山带的确定,使青藏高原印支山链的范围从过去认为的羌塘地体南界向南扩大到拉萨地体之中,对于研究古特提斯构造域的形成有重要意义. 相似文献
13.
Six samples of a single carbonate-rich unit of the Swiss Préalpes, progressively metamorphosed from diagenesis to deep anchizone, yield 40Ar/39Ar spectra with variably developed staircase patterns, consistent with mixtures of detrital mica and neocrystallized mixed-layer illite/smectite. The lowest temperature heating steps for different size fractions (2–6?μm and 6–20?μm) converge to ~40?Ma providing an imprecise, maximum age of regional metamorphism. A method is described for distinguishing and quantifying the amount of pre-existing detrital mica versus neoformed illite layer in the illite/smectite formed during Tertiary Alpine metamorphism by comparison of X-ray diffraction patterns with Newmod© simulations. In the least metamorphosed samples the illite/smectite contains ~65% neoformed illite, and this illite accounts for approximately 17% of all dioctahedral phyllosilicate minerals in the rock (e.g., detrital mica and illite/smectite). In contrast, the illite/smectite from the more strongly metamorphosed samples contains >97% neoformed illite, which accounts for ~70% to >90% of all dioctahedral phyllosilicate minerals. Phyllosilicate morphologies viewed by scanning electron microscopy are consistent with these estimates. A process of dissolution/reprecipitation is inferred as a mechanism for the growth of the neoformed phyllosilicates. A plot of neoformed illite content versus 40Ar/39Ar total fusion age yields a near-linear curve with an extrapolated age of 27?Ma for 100% neoformed dioctahedral phyllosilicates. This age is interpreted as the time of incipient metamorphism and is consistent with independent biostratigraphic constraints. Model 40Ar/39Ar age spectra constructed with the XRD simulation results correspond well to the experimental data and illustrate the changes in degassing properties of progressively metamorphosed mixtures of detrital mica and neoformed illite. 相似文献
14.
An investigation of the chemical composition of monazite from a number of localities has been carried out. Samples used include
monazites from metamorphic rocks, granitic rocks and a hydrothermal ore deposit. The REE distribution pattern of monazite
varies greatly in accordance with its geological environment. A remarkable feature of the monazites studied is that their
chondrite-normalised REE distribution patterns are mostly uniform between grains within the same sample, but differ significantly
from sample to sample. This characteristic apparently indicates that there is an important effect on the REE distribution
of monazite exerted by the host rock or source material from which monazite crystallised. Another important feature shown
by the monazites studied is that monazites in rocks containing garnet as a major mineral show extreme depletion of HREE, whereas
monazites in rocks without garnet or monazite that formed after the garnet breakdown contain significantly higher amounts
of Y and HREE. This suggests that the phase assemblage, especially garnet, plays an important role in the REE distribution
of monazites in these rocks. The value of REE distribution in monazite is exemplified with regard to the origin of monazite
in the Lewisian metamorphic rocks, which is a fundamental issue in monazite geochronology.
Received: 17 March 1999 / Accepted: 16 July 1999 相似文献
15.
In situ UV-laser ablation 40Ar/39Ar geochronological and geochemical data, together with rock and mineral compositional data, have been determined from pseudotachylyte and surrounding mylonitic gneiss associated with the UHP whiteschists of the Dora Maira Massif, Italy. Several generations of fresh pseudotachylyte occur as irregular veins up to a few cm thick both parallel and at high angles to the foliation. Whole rock XRF data collected from representative lithologies of mylonitic gneiss are uniformly consistent with a mildly alkalic granitic protolith. Minimal compositional variation is observed between the pseudotachylyte and its surrounding mylonitic gneiss. The pseudotachylyte contains newly crystallized grains of biotite and K-feldspar in a matrix of glass with partially fused grains of quartz, zircon, apatite, and titanite. Electron microprobe analyses of the glass show significant compositional variation that is probably strongly influenced by micrometer-scale changes in mineralogy. UV-laser ablation ICP-MS traverses across the mylonitic gneiss–pseudotachylyte contact are consistent with cataclastic communition of REE carriers such as epidote, monazite, allanite, zircon, and apatite before melting as an efficient mechanism of REE homogenization in the pseudotachylyte. The 40Ar/39Ar data from one band of pseudotachylyte indicate formation at 20.1 ± 0.5 Ma, when the mylonitic gneisses were already in a near surface position. The variable effects of top-to-the-west shear deformation within outcrops of the coesite-bearing unit are reflected in localized zones of protomylonite, cataclasite, ultracataclasite, and pseudotachylyte. Preservation of several generations of pseudotachylyte suggests that seismic events may have played a significant role in triggering late unroofing of the UHP rocks. It is speculated that deeper crustal seismic events potentially played a role in the unroofing of the UHP rocks at earlier stages in their exhumation history. 相似文献
16.
We report the ages of cleavage development in a normally intractable lower greenschist facies slate belt, the Central Maine-Aroostook-Matapedia belt in east-central Maine. We have attacked this problem by identifying the minimum ages of muscovite in a regional Acadian cleavage (S1) and in a local ductile fault zone cleavage (S2) using 40Ar/39Ar geochronology and the ages of crosscutting plutons. Our success stems from the regional low-grade metamorphism of the rocks in which each crystallization event preserves a40Ar/39Ar crystallization age and not a cooling age. Evidence for recrystallization via a pressure solution mechanism comes from truncations of detrital, authigenic, and in some rocks S1 muscovite and chlorite grains by new cleavage-forming muscovite and chlorite grains. Low-blank furnace age spectra from meta-arkosic and slaty rocks climb from moderate temperature Devonian age-steps dominated by cleavage-forming muscovite to Ordovician age-steps dominated by a detrital muscovite component. S1- and S2-cleaved rocks were hornfelsed by granitoids of ∼407 and 377 Ma, respectively. The combination of these minimum ages with the maximum metamorphic crystallization ages establishes narrow constraints on the timing of these two cleavage-forming events, ∼410 Ma (S1) and ∼380 Ma (S2). These two events coincide in time with a change in the plate convergence kinematics from the arrival of the Avalon terrane (Acadian orogeny), to a right-lateral transpression arrival of the Meguma terrane in the Neoacadian orogeny. 相似文献
17.
Fernando Scordari Emanuela Schingaro Gennaro Ventruti Maria Lacalamita Luisa Ottolini 《Physics and Chemistry of Minerals》2008,35(3):163-174
The crystal chemistry of red phlogopites from Mt. Vulture (Italy) ignimbrites has been studied by electron microprobe, secondary
ion mass spectrometry (SIMS), single crystal structural investigation and Fourier transform infrared (FTIR) spectroscopy.
The analysed phlogopite has Fe/(Fe + Mg) ∼ 0.35, TiO2 (wt%): 2.8–5.0 and H2O (wt%): 1.24–3.37. Infrared spectra revealed the presence of bands due to the NH4+ and H2O stretching and bending vibrations. The samples belong to the 1M polytype. The bimodal behaviour of several structural parameters allows red micas to be clustered into two distinct groups:
K+ ↔ NH4+, H2O and M3+-vacancy substitutions dominate in the first group; M3+,4+-oxy, in the second group. It has to be pointed out that quantitative analysis of hydrogen (via SIMS) together with the characterization
of the local environment of the anionic site (via FTIR) are fundamental in assessing the correct structural formula and the
substitution mechanisms in micas.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
18.
The Santa Rosa mylonite zone developed predominantly from a granodiorite protolith in the eastern margin of the Peninsular
Ranges batholith. A wide variation in K−Ar biotite dates within the zone is shown to reflect the times of cooling through
closure temperatures whose variability is chiefly a result of deformation-induced reduction in grain size. We suggest that
such variation generally may be exploited to place constraints on the timing of deformation episodes. Previous workers have
shown that deformation in the Santa Rosa mylonite zone involved the formation of mylonites and an imbricate series of low-angle
faults which divide the area into structural units. Field work, petrographic studies, and TEM analysis of deformation mechanisms
in biotite show that the granodiorite mylonite, the lowermost structural unit, formed below the granodiorite solidus. The
granodiorite mylonite varies from protomylonite to ultramylonite, with regions of high strain distributed heterogeneously
within the zone. Previously reported biotite and hornblende K−Ar dates from the granodiorite protolith below (82–89 Ma) and
the Asbestos Mountain granodiorite above (61–68 Ma) the mylonite zone indicate dramatically dissimilar thermal histories for
the lowermost and uppermost structural units. Other workers' fission track dates on sphene, zircon, and apatite from the granodiorite
mylonite and the Asbestos Mountain granodiorite suggest thermal homogenization and rapid cooling to ∼100° C by ca 60 Ma. Within
and adjacent to the mylonite zone, K−Ar dates on 5 samples of biotite from variably deformed granodiorite range from 62–76
Ma; dates are not correlated with structural depth but clearly decrease with degree of deformation and concomitant grain size
reduction. 40Ar/39Ar incremental heating analyses of biotite from the granodiorite protolith reveals no evidence of excess argon and produces
a relatively flat age spectrum. 40Ar/39Ar incremental heating analysis of biotite from the granodiorite mylonite discloses discordance consistent with 39Ar recoil loss. K analysis of samples, allowing K−Ar dates to be calculated, is therefore recommended as an adjunct to 40Ar/39Ar step heating analysis in rocks that have experienced similar deformation. During mylonitization, biotite grain size reduction
through intracrystalline cataclasis results in estimated grain dimensions as small as 0.05 μm locally within porphyroclasts
as large as 1 mm. Because biotite compositions are relatively Uniform (Fe/[Fe+Mg+Mn+Ti+AlVI]=0.47–0.52) and show no systematic variation with grain size, compositional dependence of activation energy and diffusivity
can be eliminated as sources of variation in Ar retention. Ar closure temperatures, calculated with appropriate diffusion
parameters for the observed grain sizes, are in the range ∼220–280° C and define a cooling curve consistent with a thermal
history intermediate between those of the granodiorite protolith below and the Asbestos Mountain granodiorite above the mylonite
zone. Changes in the slope of the cooling curve indicate that the main deformation episode initiated at or above ca 330° C
(∼80 Ma), above the closure temperature for thermally activated diffusion of argon in biotite, and continued to a minimum
of ca 220–260° C (∼62 Ma). 相似文献
19.
Micas in 17 pelitic (K-feldspar-free) and 8 psammitic (K-feldspar-bearing) rocks from the Wazuka and the Asemi-gawa areas in the Ryoke and the Sanbagawa metamorphic terrains, respectively, were analyzed on an electron-probe microanalyzer. The deficiency of alkali cations in the low- to middle-grade metamorphic micas is ascribed to the illite substitution, KXII+AlIV=XII (vacancy)+SiIV.At the same metamorphic grade, the deficiency of interlayer cations in micas from the pelitic rocks is greater than that from the psammitic rocks. However, it decreases with rising temperature in both rock-types, irrespective of the pressure of metamorphism.K-feldspar and biotite buffer the illite substitution. Two reactions are proposed to explain the decrease of the alkali-cation deficiency in both muscovite and biotite. 相似文献
20.
以喜马拉雅山系为典型实例,究竟是气候作用还是构造作用引起山体隆升的问题已经成为地球系统科学研究中的重要前沿问题.无论是气候因素还是构造因素引起山体隆升,二者都与一个共同的地表过程--剥蚀作用相关,剥蚀作用对山体中地质体的影响可以用岩石矿物经历的热史演化来描述,所以,在造山作用研究中,山体或山脉的热史演化是揭开地质体经历地质过程、山体隆升研究的重要途径.利用河砂组成矿物来研究流域的地质过程和构造演化已经成为现代地质科学的重要手段.本文采集了雅鲁藏布江下游墨脱县以南约50 km处地东河段内的现代河砂,对其中的角闪石、白云母、黑云母及钾长石等四种矿物进行了高精度单颗粒激光40Ar/39Ar年代学测试,并进行了概率统计.地东河段河砂中富钾矿物40Ar/39Ar年代学统计结果显示,大峡谷流域的热史演化可以确定有多个阶段,分别可以识别出70~69、61~60、43~42、35~34、26~25、25~23、22~20、20~18、17~14、12~11、8~6、5~4及<2Ma等13个热史演化阶段.通过将上述热史信息与印度大陆与欧亚大陆碰撞角度和碰撞速率变化曲线的对比,可以确定70~69、61~60、43~42、35~34、22~20和12~11Ma等6个阶段的年代学信息是两大陆碰撞角度和碰撞速率变化事件在东喜马拉雅构造结热史上的记录;通过与全球深海氧、碳同位素记录曲线的对比,可以认为26~25、25~23、17~14、8~6、5~4和<2Ma等6个阶段的年代学信息是气候变化在东喜马拉雅构造结热史上的记录.东喜马拉雅构造结地质体热史演化是构造与气候相互作用的结果. 相似文献