首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetospheric Alfvén waves are reflected by the ionosphere. We investigate the effect of horizontally varying ionospheric conductivity on the process of Alfvén wave reflection. Four idealised ionospheric models are considered in detail. We find that the reflection process is strongly dependent on the orientation of the wave electric field vector with respect to the boundary between high and low conductivities, and under certain conditions subsidiary Alfvén waves are generated. The field-aligned currents in the subsidiary Alfvén waves serve to close divergent horizontal currents resulting from the non-uniform ionospheric conductivity. The implications for ground-based pulsation studies are discussed.  相似文献   

2.
The distant effects of the field-aligned currents (FAC) observed by TRIAD are computed for conditions of low and moderate activity. The systems of total ionospheric currents (both Hall and Pedersen) generated by corresponding FAC are also examined and the contribution of the distant effects and the ionospheric currents into the total equivalent current system is estimated. The conclusions are as follows. In cases of low magnetic activity the magnetic effects produced by Pedersen currents are mainly cancelled by the FAC distant effect in accord with Fukushima's theorem. In cases of moderate activity when the zone of high ionospheric conductivity and the two-sheet FAC structure are present the FAC distant effect is too small to cancel the effect of Pedersen currents. For these conditions the system of total ionospheric currents shows the best correspondence with the experimental equivalent current system. Effects produced by the IMF azimuthal component are also analysed.  相似文献   

3.
Equivalent ionospheric current systems representing IMF sector effects on the geomagnetic field in high latitudes are examined for each of the twelve calendar months by spherical harmonic analyses of geomagnetic hourly data at 13 northern polar stations for seven years. The main feature of obtained equivalent current systems includes circular currents at about 80° invariant latitude mostly in the daytime in summer and reversed circular currents at about 70° invariant latitude mainly at night in winter. Field-aligned current distributions responsible for equivalent currents, as well as vector distributions of electric fields and ionospheric currents, are approximated numerically from current functions of equivalent current systems by taking assumed distributions of the ionospheric conductivity. Two sets of upward and downward field-aligned current pairs in the auroral region, and also a field-aligned current region near the pole show seasonal variations. Also, ionospheric electric-field propagation along geomagnetic field lines from the summer hemisphere to the winter hemisphere with auroral Hall-conductivity effects may provide an explanation for the winter reversal of sector effects.  相似文献   

4.
It is assumed that the three-dimensional current system of a substorm passes three successive stages. (1) When a dawn-to-dusk magnetospheric electric field appears, a current system with field-aligned currents at the poleward boundary of the auroral zone arises. An equivalent ionospheric current system calculated, taking into account a day-night asymmetry of ionospheric conductivity, looks like the well-known DP-2 system including an eastward low-latitude current and a greater magnitude of the dusk vortex in comparison with the dawn one. (2) An electric drift of plasma towards the Earth leads to the appearance of a westward partial ring current increasing in time. This current is closed by field-aligned currents at the equatorward boundary of the auroral zone. The calculated equivalent current system is similar to the well-known one of the precursory phase. (3) An increase of the auroral ionospheric conductivity during the expansive phase produces an increase of all currents and a turning of field-aligned currents at the equatorward boundary of the auroral zone relative to those at the poleward one. The calculated equivalent current system is similar to the DP-1 system.  相似文献   

5.
We have developed a dynamical model of the ionospheric conductivity distribution using ground magnetic data. The model is based on the Spiro et al. (1982, J. geophys. Res. 87, 8215) average conductivity models, but adjusts their latitudinal distribution to the instantaneous distribution of field-aligned currents calculated from the equivalent current function. It can thus take into account the dependence of the conductivity distribution on fluctuations of solar wind parameters and magnetospheric disturbances. A comparison of electric fields calculated from the equivalent current function and the new conductivity model with those measured by the STARE radars, shows that the present conductivity model gives better results than obtained by using the same current function but earlier conductivity models.  相似文献   

6.
The electric currents induced in the atmosphere of a non-magnetic planet such as Venus by the interaction of the solar wind satisfy a generalized Ohm's Law relationship with tensor conductivity. The distribution of these currents within the planetary ionosphere may be calculated by a variational technique which minimizes the Joule heating over the ionospheric volume. In this paper, we present the development of the variational technique, and apply it to a model of the solar wind interaction with Venus.Potential and current distributions are shown, and the use of these distributions in determining convective transport patterns of planetary ions is discussed.  相似文献   

7.
Two kinetic models for the auroral topside ionosphere are compared. The collisionless plasma distributed along an auroral magnetic field line behaves like a non-Ohmic conducting medium with highly non-linear characteristic curves relating the parallel current density to the potential difference between the cold ionosphere and the hot plasmasheet region. The (zero-electric current) potential difference, required to balance the current carried by the precipitating plasmasheet particles and the current transported by the outflowing ionospheric particles, depends on the ratio nps.e/nth.e and Tps.e/Tth.e of the plasmasheet and ionospheric electron densities and temperatures. When in the E-region the magnetic field lines are interconnected by a high conductivity plasma the resulting field-aligned currents driven by the magnetospheric potential distribution are limited by the integrated Pedersen conductivity of the ionospheric layers. These currents are not related to the parallel electric field intensity as they would be in Ohmic materials. The parallel electric field intensity is necessarily determined by the local quasi-neutrality of the plasma.  相似文献   

8.
9.
On the basis of records from meridian chains of magnetometers and the KRM inversion method, we have deduced a number of ionospheric quantities, including the distribution of the electric potential, field-aligned currents, the ionospheric currents and its equatorial counterpart and the relationship between the AE index and the cross-polar cap potential. In this paper, we examine the results thus obtained in the light of compatible data which are deduced from satellite observations. It is shown that both results agree fairly well, proving the validity of the polar ionospheric parameters deduced from both the ground-based and satellite-based data. Several important implications of the results are pointed out.  相似文献   

10.
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases, the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury’s magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury’s magnetosphere.  相似文献   

11.
The magnetospheric plasma convection is studied, taking into account the finite conductivity along magnetic field lines. Field-aligned currents flowing at the inner boundary of the magnetospheric plasma sheet give rise to parallel electric fields which insignificantly affect the convection on the ionospheric level but change drastically the convection system in the magnetosphere. Intense azimuthal convective streams arise along both sides of the plasma sheet boundary. A part of convection lines appears to be completely closed in the inner magnetosphere.  相似文献   

12.
The pattern of the ionospheric electric field around the westward travelling surge (WTS) is theoretically studied. This is obtained by solving the current continuity equation at the ionospheric altitude for temporal and spatial development of the field-aligned current density modelled as the WTS phenomenon. The results show that the divergence of the ionospheric electric field is significantly changed depending on the dawn-to-dusk convection electric field E0 because of non-uniformity in the ionospheric conductivity: the ionospheric electric field diverges in the upward current region (around the head of the WTS) when a westward electric field E0 of 10 mV m−1 is uniformly applied. On the other hand, the ionospheric electric field converges without E0. From the observational inference that the ionospheric electric field converges around the head of the WTS, it is suggested that the WTS phenomenon may not be accounted for by the discharging process in the presence of the enhanced dawn-to-dusk convection electric field and non-uniform conductivity as was studied by previous authors.  相似文献   

13.
On the basis of the experimental data on the ionospheric conductivities and field-aligned currents the electric fields and currents in the ionosphere generated by the field-aligned currents were computated for various magnetic activity conditions. The model of the ionospheric conductivities by Vanyan and Osipova (1975) was used taking into account the influence of the universal time seasons and magnetic activity. The field-aligned current patterns and their change with magnetic activity was set on the basis of the TRIAD data. It is shown that the calculated patterns of the ionospheric electric fields and currents are in agreement with the measured electric fields and the equivalent current systems of the magnetic disturbances in high latitudes. The conclusion is made that the magnetospheric field-aligned currents are the main sources of the presently known polar magnetic disturbances.  相似文献   

14.
We look at time-dependent normal mode solutions to the Alfven wave equation in a uniform magnetic field, between planar ionospheres. In particular, the effect of sharp gradients in ionospheric conductivity on the spatial and temporal structure of the waves is considered. We show that the electric field of the wave must always be perpendicular to any conductivity discontinuities present, and that this is achieved by the generation of circularly polarized Alfven waves at the discontinuity. The results are applied to an ionospheric strip of high conductivity; this being relevant to Pi2s.  相似文献   

15.
The geomagnetic daily variations at the Nigerian dip equator have been analyzed with the methodology introduced in a previous paper. It has been found that the height integrated current presents a notoriously higher amplification in Nigeria than in Peru. It has also been found that there exists a strong and inhomogeneous anomaly in the Earth's conductivity in Nigeria. And contrary to what is usually accepted, it is shown that its latitudinal distribution can not be precisely determined until the distribution and magnitude of the ionospheric currents at F-region heights is more accurately known.  相似文献   

16.
We propose a model three-dimensional current system for the magnetospheric substorm, which can account for the new findings of the field-aligned and ionospheric currents obtained during the last few years by using new techniques. They include (1) the ionospheric currents at the auroral latitude deduced from the Chatanika incoherent scatter radar data, (2) the field-aligned currents inferred from the vector magnetic field observations by the TRIAD satellite and (3) the global distribution of auroras with respect to the auroral electrojets appearing in DMSP satellite photographs. The model current system is also tested by a computer model calculation of the ionospheric current pattern. It is shown that the auroral electrojets have a strong asymmetry with respect to the midnight meridian. The westward electrojet flows along the discrete aurora in the evening sector, as well as along the diffuse aurora in the morning sector. The eastward electrojet flows equatorward of the westward electrojet in the evening sector. It has a northward component and joins the westward electrojet by turning westward across the Harang discontinuity. Thus, the latitudinal width of the westward electrojet in the morning sector is much larger than that in the evening sector. The field-aligned currents, consisting of two pairs of upward and inward currents (one is located in the morning sector and the other in the evening sector), are closed neither simply by the east-west ionospheric currents nor by the north-south currents, but by a complicated combination of the north-south and east-west paths in the ionosphere. The magnetospheric extension of the current system is also briefly discussed.  相似文献   

17.
Zmuda and Armstrong (1974) showed that the field-aligned currents consist of two pairs; one is located in the morning sector and the other in the evening sector. Our analysis of magnetic records from the TRIAD satellite suggests that in each pair the poleward field-aligned current is more intense than the equatorward current, a typical ratio being 2:1. This difference has a fundamental importance in understanding the coupling between the magnetosphere and the ionosphere. We demonstrate this importance by computing the ionospheric current distribution by solving the continuity equation ▽ . I = j using the “observed” distribution of j for several models of the ionosphere with a high conductive annular ring (simulating the auroral oval).It is shown that the actual field-aligned and ionospheric current system is neither a simple Birkeland type, Boström type nor Zmuda-Armstrong type, but is a complicated combination of them. The relative importance among them varies considerably, depending on the conductivity distribution, the location of the peak of the field-aligned currents, etc. Further, it is found that the north-south segment of ionospheric current which connects the pair of the field-aligned currents in the morning sector does not close in the same meridian and has a large westward deflection. Thus, it has an appreciable contribution to the westward electrojet. One of the model calculations shows that the entire north-south closure current contributes to the westward electrojet.  相似文献   

18.
Magnetohydrodynamic resonance theory is used to model the structure of the magnetospheric and ionospheric electric and magnetic fields associated with Pc5 geomagnetic pulsations. In this paper the variation of the fields across the invariant latitude of the resonance are computed. The results are combined with calculations of the variation along a field line to map the fields down to the ionosphere. In one case the results are compared with measurements obtained by the STARE auroral radar and show good agreement. The relationship between the width of the resonance region and ionospheric height-integrated Pedersen conductivity is computed and it is shown how auroral radar measurements of Pc5 oscillations could be used to determine ionospheric height-integrated Pedersen conductivity. It is pointed out that from these calculations it would be possible to identify the field line on which a satellite was located by comparing a Pc5 pulsation observed by the satellite, and the same pulsation observed by STARE.  相似文献   

19.
A review of recent experimental results from studies of high latitude Pi 2 pulsations indicates that these pulsations are fundamentally related to the initiation of the auroral breakup and substorm. At high latitudes, the Pi 2's show their peak intensities in the region where the breakup begins and appear to remain in this region after the breakup has spread poleward. In addition, the Pi 2's occur simultaneously with, or before all other ionospheric phenomena associated with the breakup. The field aligned and ionospheric currents associated with the Pi 2 resemble those of a typical substorm, but the ionospheric currents are phase shifted compared to the field aligned current. The periodic oscillations of the Pi 2's are probably caused by a reflection of the initial field aligned current pulse from the auroral ionosphere. This pulse is trapped on dipolar field lines leading to multiple reflections from North and South auroral ionospheres.  相似文献   

20.
This paper presents the recent progress in our project of estimating near real-time electric fields and currents in the ionosphere through our computer system called the Geospace Environment Data Analysis System (GEDAS). We show a new technique in which data from ground magnetometers are collected by the system and used as input for the KRM and AMIE programs to calculate the distribution of ionospheric electric fields and currents, as well as of other ionospheric parameters, such as electric potential patterns. One of the goals of this project is to specify ionospheric processes. Examples of the near real-time calculation and the data flow of our scheme are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号