首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper examines the role played by the high energy tail of the electron distribution function on Langmuir probe characteristics. A model is developed to derive the mean energy and the density of the hyperthermal electrons from probe characteristics for two ionospheric rocket flights involving different plasma conditions. The hyperthermal electrons are shown to influence the electron temperature measurement even if they constitute only a small fraction of the total electron concentration. The influence of the geomagnetic field, the collisions and the velocity of the vehicle on the probe data are also examined.  相似文献   

2.
IMP-6 spacecraft observations of low frequency radio emission, fast electrons, and solar wind plasma are used to examine the dynamics of the fast electron streams which generate solar type-III radio bursts. Of twenty solar electron events observed between April, 1971 and August, 1972, four were found to be amenable to detailed analysis. Observations of the direction of arrival of the radio emission at different frequencies were combined with the solar wind density and velocity measurements at 1 AU to define an Archimedean spiral trajectory for the radio burst exciter. The propagation characteristics of the exciter and of the fast electrons observed at 1 AU were then conpared. We find that: (1) the fast electrons excite the radio emission at the second harmonic; (2) the total distance travelled by the electrons was between 30 and 70% longer than the length of the smooth spiral defined by the radio observations; (3) this additional distance travelled is the result of scattering of the electrons in the interplanetary medium; (4) the observations are consistent with negligible true energy loss by the fast electrons.  相似文献   

3.
This paper investigates in detail the peak frequency of gyrosynchrotron radiation spectrum with self and gyroresonance absorption for a model of nonuniform magnetic field. It is found that the peak frequency shifts from lower frequency to higher frequency with increases in the low-energy cutoff, number density, input depth of energetic electrons, magnetic field strength and viewing angle. When the number density and temperature of thermal electrons increase, the peak frequency also shifts to a slightly higher frequency. However, the peak frequency is independent of the energy spectral index, high-energy cutoff of energetic electrons and the height of the radio source’s upper boundary. It is also found for the first time that there is a good linear correlation between the logarithms of the peak frequency and the low-energy cutoff, number density, input depth of energetic electrons, magnetic field strength, and viewing angle, respectively. Their correlation coefficients are higher than 0.95 and the standard errors are less than 0.06.  相似文献   

4.
利用北京天文台高时间和高频率分辨率的射电频谱仪对射电尖峰的测量,可以对背景等离子体参数进行的自洽诊断( 磁场,密度,温度,波矢,及非热电子的性质) 。该诊断基于电子回旋脉塞不稳定性和回旋共振吸收。最后从诊断结果和太阳日冕典型参数的比较以确定尖峰辐射的谐波数。  相似文献   

5.
The gyro-synchrotron emission from a model source with a non-uniform magnetic field is computed taking into account the self absorption. This model seems adequate not only to interpret the radio spectrum and its time variation of microwave impulsive bursts but also to solve the discrepancy between the numbers of non-thermal electrons emitting radio burst and those emitting hard X-ray burst.The decrease of flux of radio burst with decreasing frequency at low microwave frequencies is due to the self absorption and/or the thermal gyro-absorption. In this frequency range, the radio source is optically thick even at weak microwave bursts. The weakness of the bursts may be rather due to the small size of the radio source and/or the weakness of the magnetic field than the small number density of the non-thermal electrons.The time variation of the flux of radio burst may be mainly attributed to the variation of source size in a horizontal direction ( direction) instead of the variation of the number density of non-thermal electrons itself, implying that the acceleration region progressively moves in the horizontal direction leaving the non-thermal electrons behind during the increasing phase of the radio burst.  相似文献   

6.
The concept of the nanoflare, used in interpreting the solar X-ray corona, is extended to RS CVn stars which, unlike the Sun, exhibit non-thermal quiescent radio spectra. The theoretical synchrotron-radiation radio spectrum emitted by a regular series of nanoflare-electron pulses, injected into the coronal magnetic field, is derived: for an electron energy spectrum N ( γ )∝ γ − s , the spectral power density is given by P ( ν )∝ ν − s /2. This result is valid for the observation of a series of nanoflares with total time duration ≳ the characteristic electron radiation lifetime, which is the case for electrons trapped in extensive coronal regions such as exist in RS CVn stars on the magnetic-dipole magnetospheric model. The tenuous coronal plasma allows the electrons to give a radio spectrum unaffected at high frequencies (≳5 GHz) by electron collision loss, while the emission of bremsstrahlung X-rays by the electrons also occurs with a spectrum that is related to their radio emission. The observation of individual X-ray bursts, which would provide direct evidence for microflares, is not, however, attainable with current instrumentation.  相似文献   

7.
W. K. Yip 《Solar physics》1973,30(2):513-526
The radio emissions caused by electron streams in a non-isothermal plasma are studied quantitatively. It is proposed that conversion of the stream-excited plasma waves into electromagnetic waves by scattering on the thermal fluctuations at nonisothermal sonic oscillation frequency is the origin of the emission of the split-pair burst near the plasma frequency. The occurrence of the split-pair bursts near the second harmonic of the plasma frequency can be due to combination scattering of the stream-excited plasma waves by electron density fluctuations which are produced by the scattered plasma waves. With a streamer model in which the electron densities are two times those in Newkirk's model, both the observed frequency splitting and the rate of drift of the split pair can be explained as the result of plasma radiation caused by a stream of 10 keV electrons. A tentative model for the split-pair emission is suggested.  相似文献   

8.
C. C. Harvey 《Solar physics》1976,46(2):509-509
An attempt is made to explain the observed frequency-time profiles of type III solar radiobursts in terms of a rapid plasma wave decay rate combined with the exciter model recently proposed by the author. The decay rate is assumed to be sufficiently rapid for the plasma wave energy density profile to be similar to the excitor power density time profile; this is consistent with the exciter model, the rapid decay being caused by Landau damping on the electrons of the modified high energy tail of the ambient plasma electron velocity distribution. The model is compared with radio observations by making simple assumptions about the dependence of the radio intensity upon the plasma wave energy. A comparison is made with simultaneous radio and electron observations by further assuming a simple power-law velocity distribution for the electrons at their point of ejection from the Sun.  相似文献   

9.
The radio emission from Jupiter at 10, 21 cm wavelength has been measured with a spatial resolution of the order of 1 Jupiter radius. This may be analytically reduced to the emission per cubic centimeter of source at each measured frequency. The theoretically predicted synchrotron emission of electrons as a function of frequency, magnetic field and electron energy can then be compared to the observed source emissivity to obtain the number density and ‘temperature’ of the electrons. Present observations taken at different epochs are not sufficiently reliable to infer peak energies within an order of magnitude. Nevertheless the present results indicate that electrons diffuse in rapidly (in a time of the order of months) conserving the first adiabatic invariant and reach a peak energy at about 2 Jupiter radii. The electron energy decreases rapidly nearer the planet because of energy lost to radiation in the large magnetic field close to the planet.  相似文献   

10.
A theoretical analysis of electron-cyclotron maser instabilities indicates that the distribution function of non-thermal electrons influences millisecond radio spikes in solar flares, and that a hollow beam distribution is more likely than a loss-cone distribution. The restrictions of classical theories of cyclotron resonant absorption are discussed and a formula is derived for the absorption coefficient near the resonant frequency. Finally, the computations show that for typical coronal parameters, the growth rates of the fundamental of fast extraordinary modes are much faster than those of their second harmonics; and because the directional angle of the fundamental is smaller, its resonant absorption may be neglected. Moreover, the band-width of the fundamental is consistent with observation of radio spikes; therefore, we claim that the millisecond radio spikes in the decimetric range are composed mainly of fundamentals of the fast extraordinary modes. The second harmonics of fast extraordinary modes may be generated for directions near to the vertical to the magnetic field, but it is impossible to observe both fundamental and second harmonics in the same direction.  相似文献   

11.
T. Takakura 《Solar physics》1979,61(1):161-186
A simulation of normal type III radio bursts has been made in a whole frequency range of about 200 MHz to 30 kHz by the usage of the semi-analytical method as developed in previous papers for the plasma waves excited by a cloud of fast electrons. Three-dimensional plasma waves are computed, though the velocities of fast electrons are assumed to be one-dimensional. Many basic problems about type III radio bursts and associated solar electrons have been solved showing the following striking or unexpected results.Induced scattering of plasma waves, by thermal ions, into the plasma waves with opposite wave vectors is efficient even for a solar electron cloud of rather low number density. Therefore, the second harmonic radio emission as attributed to the coalescence of two plasma waves predominates in a whole range from meter waves to km waves. Fundamental radio emission as ascribed to the scattering of plasma waves by thermal ions is negligibly small almost in the whole range. On the other hand, third harmonic radio emission can be strong enough to be observed in a limited frequency range.If, however, the time integral of electron flux is, for example, 2 × 1013 cm–2 (>5 keV) or more at the height of 4.3 × 1010 cm ( p = 40 MHz) above the photosphere, the fundamental may be comparable with or greater than the second harmonic, but an effective area of cross-section of the electron beam is required to be very small, 1017 cm2 or less, and hence much larger sizes of the observed radio sources must be attributed to the scattering alone of radio waves.The radio flux density expected at the Earth for the second harmonic can increase with decreasing frequencies giving high flux densities at low frequencies as observed, if x-dependence of the cross-sectional area of the electron beam is x 1.5 or less instead of x 2, at least at x 2 × 1012 cm.The second harmonic radio waves are emitted predominantly into forward direction at first, but the direction of emission may reverse a few times in a course of a single burst showing a greater backward emission at the low frequencies.In a standard low frequency model, a total number of solar electrons above 18 keV arriving at the Earth orbit reduces to 12% of the initial value due mainly to the collisional decay of plasma waves before the waves are reabsorbed by the beam electrons arriving later. However, no deceleration of the apparent velocity of exciter appears. A change in the apparent velocity, if any, results from a change in growth rate of the plasma waves instead of the deceleration of individual electrons.Near the Earth, the peak of second harmonic radio flux as emitted from the local plasma appears well after the passage of a whole solar electron cloud through this layer. This is ascribed to the secondary and the third plasma waves as caused in non-resonant regions by the induced scattering of primary plasma waves in a resonant region.  相似文献   

12.
The multiphoton inverse bremsstrahlung absorption of two intense electromagnetic beams passing through a magnetized plasma is studied. The rate of absorption of electromagnetic energy by the electrons is calculated by deriving a kinetic equation for the electrons. It is found that the absorption enhances when the frequency of one electromagnetic beam is more, and that of the other electromagnetic beam is less, than the electron-cyclotron frequency. A possible application to extragalactic radio sources is discussed.  相似文献   

13.
E. Y. Zlotnik 《Solar physics》2013,284(2):579-588
Solar radio emission is a significant source of information regarding coronal plasma parameters and the processes occurring in the solar atmosphere. High resolution frequency, space, and time observations together with the developed theory make it possible to retrieve physical conditions in the radiation source and recognize the radiation mechanisms responsible for various kinds of solar radio emission. In particular, the high brightness temperature of many bursts testifies to coherent radiation mechanisms, that is, to plasma instabilities in the corona. As an example, the fine structure of solar radio spectra looking like a set of quasi-harmonic stripes of enhanced and lowered radiation, which is observed against the type IV continuum at the post-flare phase of activity, is considered. It is shown that such emission arises from a trap-like source filled with a weakly anisotropic equilibrium plasma and a small addition of electrons which have a shortage of small velocities perpendicular to the magnetic field. For many recorded events with the mentioned fine spectral structure the instability processes responsible for the observed features are recognized. Namely, the background type IV continuum is due to the loss-cone instability of hot non-equilibrium electrons, and the enhanced striped radiation results from the double-plasma-resonance effect in the regions where the plasma frequency f p coincides with the harmonics of electron gyrofrequency f B ; f p=sf B . Estimations of the electron number density and magnetic field in the coronal magnetic traps, as well as the electron number density and velocities of hot electrons necessary to excite the radiation with the observed fine structure, are given. It is also shown that in some cases several ensembles of non-equilibrium electrons can coexist in magnetic traps during solar flares and that its radio signature sensitively depends on the parameters of the distribution functions of the various ensembles.  相似文献   

14.
The intensity and frequency spectrum of gyro-synchrotron emission from energetic solar electrons radiating in coronal magnetic fields are calculated. These calculations, based on a recent study of the generation of gyro-synchrotron emission in a magnetoactive plasma, are applied to a Type IV radio burst originating at a high altitude in the solar corona. It is shown that the observed frequency spectrum of the burst, which exhibits very sharp low and high frequency cutoffs, can be best understood in terms of gyro-synchrotron emission in an ionized medium and that from the observed frequency spectrum and the ambient coronal density it is possible to deduce both the magnetic field at the site of the emission and the range of electron energies responsible for the burst.NAS-NASA Post-Doctoral Resident Research Associate.Research supported by the National Research Foundation under grant GP-849.  相似文献   

15.
We explore the possibility of determining the corpuscular composition of the plasma in the relativistic jets of blazars and microquasars from data on the polarization and intensity of their radio synchrotron emission. We have constructed a universal diagram that allows the relative content of nonrelativistic electrons to be established in specific objects using information about their frequency spectra and polarization at individual frequencies. As a result, we have found that the electron plasma component in the jets of the blazars 3C 279 and BL Lac is relativistic. In the jets of the microquasar GRS 1915+105, the cold plasma density may be comparable to or considerably higher than the relativistic particle density.  相似文献   

16.
Radio relics have been discovered in many galaxy clusters. They are believed to trace shock fronts induced by cluster mergers. Cosmological simulations allow us to study merger shocks in detail since the intra-cluster medium is heated by shock dissipation. Using high resolution cosmological simulations, identifying shock fronts and applying a parametric model for the radio emission allows us to simulate the formation of radio relics. We analyze a simulated shock front in detail. We find a rather broad Mach number distribution. The Mach number affects strongly the number density of relativistic electrons in the downstream area, hence, the radio luminosity varies significantly across the shock surface. The abundance of radio relics can be modeled with the help of the radio power probability distribution which aims at predicting radio relic number counts. Since the actual electron acceleration efficiency is not known, predictions for the number counts need to be normalized by the observed number of radio relics. For the characteristics of upcoming low frequency surveys we find that about thousand relics are awaiting discovery.  相似文献   

17.
Using numerical simulation, we investigate the possibility that echo components of type IIId solar decameter bursts can be produced through refraction of radio emission in a coronal plasma with large-scale regular electron density inhomogeneities. It is shown that the observed time profiles of radio burst intensity with three or four maxima can be related to the presence in the middle corona of streamers and a localized regular nonuniformity whose electron density exceeds background electron density by a factor of more than 3 – 4. The nonuniformity scale in this case is comparable with the optical diameter of the solar disk. The observed radio burst echo components with delays longer than 3 s are explained by the production of additional radio emission propagation modes within a “transverse" refraction waveguide arising between the localized electron density nonuniformity and deeper layers in the corona. As these additional modes are reflected from the streamers, they can reach the Earth. Calculations of the time profile of radio burst intensity take into consideration the influence of scattering by turbulent coronal inhomogeneities and of collisional absorption. Comparison of the modeling results with the observational data shows that the calculated values of some profile parameters differ from the observed values. One of the possible reasons is that the method used does not take into account the diffraction leakage of radio emission through the large-scale nonuniformity.  相似文献   

18.
High resolution electron density profiles were obtained with the incoherent scatter radar EISCAT at Ramfjordmoen over the height range 70–130 km during a period of auroral radio absorption events. The experiment, which was specially designed for D-region study, was carried out with a vertical radar beam and was based on a Barker-coded multipulse scheme with four frequency channels. The achieved height and time resolutions in electron density profiles were 750 m and 15 s respectively. The absorption values calculated from these electron density data show good temporal and spatial correspondence with absorption values obtained at local and nearby riometer stations.  相似文献   

19.
The forthcoming collision by debris of P/Shoemaker-Levy 9 comet with Jupiter during the week of July 18, 1994 has generated considerable scientific and public interest. This collision may release an amount of energy ranging from 1025-1031 ergs in the Jovian atmosphere. Two possible phenomena associated with this event are described in this Letter to the Editor. The first one is the likely display of deformed Jovian magnetic field lines as the comet interacts with the Jovian magnetosphere. The second one is electromagnetic radiation outbursts during comet explosions over a wide frequency range from radio up to gamma ray emissions. If relativistic electrons with energies up to ~ 1000 MeV could be produced during comet explosions, then synchrotron radiations with frequencies from radio up to infrared range could be detectable. Hard X-rays and gamma rays could be produced by bremsstrahlung and inverse Compton processes. Since one cannot exclude the possible transient presence of relativistic electrons with Lorentz factor 2 × 106, synchrotron radiation component might even be extended into gamma ray frequency range during intermittent short time intervals.  相似文献   

20.
The head-on collision between two electron-acoustic solitary waves (EASWs) in an unmagnetized plasma is investigated, including a cold electrons fluid, hot electrons, obeying a nonextensive distribution and stationary ions. By using the extended Poincaré-Lighthill–Kuo (PLK) perturbation method, the analytical phase shifts following the head-on collision are derived. The effects of the ratio of the number density of hot electrons to the number density of cold electrons α, and the nonextensive parameter q on the phase shifts are studied. It is found that q and the hot-to-cold electron density ratio significantly modify the phase shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号