首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a dynamical model of the ionospheric conductivity distribution using ground magnetic data. The model is based on the Spiro et al. (1982, J. geophys. Res. 87, 8215) average conductivity models, but adjusts their latitudinal distribution to the instantaneous distribution of field-aligned currents calculated from the equivalent current function. It can thus take into account the dependence of the conductivity distribution on fluctuations of solar wind parameters and magnetospheric disturbances. A comparison of electric fields calculated from the equivalent current function and the new conductivity model with those measured by the STARE radars, shows that the present conductivity model gives better results than obtained by using the same current function but earlier conductivity models.  相似文献   

2.
The CORONAS-F spacecraft crossed the zone of the ring solar eclipse three times on May 31, 2003. A considerable decrease in solar radiation was detected by the spacecraft instruments for these moments. The passages through the eclipse zone were registered by the VUSS instrument, which measured the shortwave solar radiation flux near the hydrogen Lyman alpha line, and by the DIFOS instrument, which was sensitive to infrared, visible, and near-ultraviolet radiation. The eclipse is also clearly seen in solar images obtained by the X-ray SPIRIT telescope. Some details of measurement results are discussed.  相似文献   

3.
By using a high-precision LaCoste-Romberg gravimeter, continuous and precise measurements were carried out during the March 9, 1997 total solar eclipse in Mohe region in Northeast China. The gravity variations were digitally recorded during the total solar eclipse so as to investigate the possible anomaly of the Sun and the Moon's gravitational fields on the Earth. After the careful processing and analysis of the observed data, no significant anomaly during the very solar eclipse was found. However, there are two ‘gravity anomaly valleys’ with near symmetrical decrease of about 6 ∼ 7 μg at the first contact and the last contact. This is the anomaly phenomenon observed and reported for the first time in the literature. This paper is intended to explain the observed anomaly by conducting the tilt experiment due to the thermal stress and temperature change in the solar eclipse. A new constraint limit on gravitational shielding is thus obtained. Some analysis and discussions are presented although further studies and research are highly needed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Equivalent ionospheric current systems representing IMF sector effects on the geomagnetic field in high latitudes are examined for each of the twelve calendar months by spherical harmonic analyses of geomagnetic hourly data at 13 northern polar stations for seven years. The main feature of obtained equivalent current systems includes circular currents at about 80° invariant latitude mostly in the daytime in summer and reversed circular currents at about 70° invariant latitude mainly at night in winter. Field-aligned current distributions responsible for equivalent currents, as well as vector distributions of electric fields and ionospheric currents, are approximated numerically from current functions of equivalent current systems by taking assumed distributions of the ionospheric conductivity. Two sets of upward and downward field-aligned current pairs in the auroral region, and also a field-aligned current region near the pole show seasonal variations. Also, ionospheric electric-field propagation along geomagnetic field lines from the summer hemisphere to the winter hemisphere with auroral Hall-conductivity effects may provide an explanation for the winter reversal of sector effects.  相似文献   

5.
The effect of solar eclipse of July 22, 2009, obscuring up to 91 %, upon the value of point discharge current (PDC) has been reported in this paper. The observation had been taken from Kolkata (Lat. 22.56°N, Long. 88.5°E). During the eclipse period, significant variations in the magnitude of PDC were observed than their average value for the same period in other days. The average value of the PDC for the successive ±10 days adjacent to the solar eclipse day was about 2.253 A.U. (Arbitrary Unit), while the minimum value showed about 2.242 A.U. at the time of greatest phase at 06:26.4 IST (Indian Standard Time). The results are mainly interpreted in terms of changes of the conductivity of the medium during the solar eclipse.  相似文献   

6.
The concept of the solar general magnetic field is extended from that of the polar fields to the concept of any axisymmetric fields of the whole Sun. The poloidal and toroidal general magnetic fields are defined and diagrams of their evolutionary patterns are drawn using the Mount Wilson magnetic synoptic chart data of Carrington rotation numbers from 1417 to 1620 covering approximately half of cycle 19 and cycle 20. After averaging over many rotations long-term regularities appear in the patterns. The diagrams of the patterns are compared with the Butterfly Diagram of sunspots of the same period. The diagram of the poloidal field shows that the Sun behaves like a magnetic quadrupole, each hemisphere having two branches of opposite polarities with mirror images on the other hemisphere. This was predicted by a solar cycle model driven by the dynamo action of the global convection by Yoshimura and could serve as a verification of the model. The diagram of the toriodal field is similar to the Butterfly Diagram of sunspots. The slight differences which do exist between the two diagrams seems to show that the fields responsible for the two may originate from different zones of the Sun. Common or different characteristics of the three diagrams are examined in terms of dynamical structure of the convection zone referring to the theoretical model of the solar cycle driven by the dynamo action of the global convection.  相似文献   

7.
When observed at soft X-ray wavelengths coronal holes are seen as open features, devoid of X-ray emission and bounded by apparently divergent coronal loop structures. Inspection of the topology of the photospheric magnetic fields associated with these features suggests that holes are formed when the remnants of active region fields, emerging in both hemispheres over a period of several solar rotations, combine to form a large area of essentially unipolar field. Remnants of opposite polarity fields surround these features resulting in a divergent magnetic configuration at the hole boundaries. Holes are seen to form and evolve while the large scale divergent field pattern is reinforced and to close when large scale remnants occur which disrupt the general field pattern. Two types of holes are observed in the early Skylab observations. The first are elongated features which are aligned approximately north-south extending from one solar pole to a polar filament channel in the opposite hemisphere. The polar holes and somewhat lower latitude holes appear to lie in unipolar areas which are completely confined by opposite polarity fields. Studies of the rotation properties of an elongated hole, which extended from the north pole to a latitude of approximately 20° S, showed it to rotate with a synodic rate of (13.25±0.03)?(0.4±0.1 sin2φdeg day?1. Possible explanations for the almost rigid rotational characteristics of this feature are discussed.  相似文献   

8.
9.
Electric current helicity in the solar atmosphere   总被引:2,自引:0,他引:2  
N. Seehafer 《Solar physics》1990,125(2):219-232
In the theories of solar magnetism, kinetic and magnetic helicities, which arise as a consequence of the rotation of the Sun, play a key role. The dynamo for the main field is assumed to operate in the convection zone. The solar rotation also may be the ultimate cause for the generation of dc electric currents in the atmosphere, needed as the energy source for flares. Then in the atmosphere the electric current helicity, H C = B · × B, which is a pseudo-scalar quantity, should be antisymmetric about the equatorial plane. An inspection of 16 active regions, for which H C has been estimated by using extrapolation of measured photospheric magnetic fields, leads to the result that the electric current helicity is predominantly negative in the northern and positive in the southern hemisphere. The helicity of the large-scale currents generated according to standard dynamo theory by the alpha effect in the convection zone is just opposite in sign. Current generation due to rotational motions of sunspots and other magnetic elements in accordance with the global differential rotation, i.e., counter-clockwise in the northern and clockwise in the southern hemisphere, however, can explain the rule found. Also in some alternative dynamo models for the global field, in which the dynamo operates at the base of the convection zone, the large-scale current helicity generated by the alpha effect has the sign needed.  相似文献   

10.
This paper presents the study of normalized north–south asymmetry, cumulative normalized north–south asymmetry and cumulative difference indices of sunspot areas, solar active prominences (at total, low (?40°) and high (?50°) latitudes) and Hα solar flares from 1964 to 2008 spanning the solar cycles 20–23. Three different statistical methods are used to obtain the asymmetric behavior of different solar activity features. Hemispherical distribution of activity features shows the dominance of activities in northern hemisphere for solar cycle 20 and in southern hemisphere for solar cycles 21–23 excluding solar active prominences at high latitudes. Cumulative difference index of solar activity features in each solar cycle is observed at the maximum of the respective solar cycle suggesting a cyclic behavior of approximately one solar cycle length. Asymmetric behavior of all activity features except solar active prominences at high latitudes hints at the long term periodic trend of eight solar cycles. North–south asymmetries of SAP (H) express the specific behavior of solar activity at high solar latitudes and its behavior in long-time scale is distinctly opposite to those of other activity features. Our results show that in most cases the asymmetry is statistically highly significant meaning thereby that the asymmetries are real features in the N–S distribution of solar activity features.  相似文献   

11.
The three-dimensional current system over an enhanced conductivity strip identified with an auroral arc is calculated for the case of the magnetospheric plasma convection across this strip. The strip produces a stationary Alfvén wave which propagates along magnetic field lines and is carried simultaneously by the convecting plasma. The Alfvén wave generation corresponds to an appearance of field-aligned currents over the arc. The three-dimensional current system generated over the arc is studied, taking into account reflection of the waves from the ionosphere of the opposite hemisphere. The correspondence of the theory with the experimental results is found.  相似文献   

12.
We summarize new and continuing three-dimensional spherical shell simulations of dynamo action by convection allowed to penetrate downward into a tachocline of rotational shear. The inclusion of an imposed tachocline allows us to examine several processes believed to be essential in the operation of the global solar dynamo, including differential rotation, magnetic pumping, and the stretching and organization of fields within the tachocline. In the stably stratified core, our simulations reveal that strong axisymmetric magnetic fields (of ∼ 3000 G strength) can be built, and that those fields generally exhibit a striking antisymmetric parity, with fields in the northern hemisphere largely of opposite polarity to those in the southern hemisphere. In the convection zone above, fluctuating fields dominate over weaker mean fields. New calculations indicate that the tendency toward toroidal fields of antisymmetric parity is relatively insensitive to initial magnetic field configurations; they also reveal that on decade-long timescales, the magnetic fields can briefly enter (and subsequently emerge from) states of symmetric parity.We have not yet observed any overall reversals of the field polarity, nor systematic latitudinal propagation. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The eclipse was observed at two microwave frequencies, 7 GHz and 22.2 GHz, and has shown the presence of polarized regions, suggesting also excess of left-handed polarized radiation from the solar northern hemisphere. Difference in eclipsing times at the two frequencies for an active center near the limb is discussed.  相似文献   

14.
We present infrared (20 μm) observations of Saturn's rings for a solar elevation angle of 10° and phase angle of 6°. Scans across the rings yield information about the cooling of particles during eclipse and the subsequent heating along their orbits. All three rings exhibit significant cooling during eclipse, as well as a 20-μm brightness asymmetry between east and west ansae, the largest asymmetry occuring in the C ring (the brightest ring). The eclipse cooling is a simple and adequate explanation for 20-μm brightness asymmetries between the ansae of Saturn's rings. The relatively large C ring asymmetry is thought to be primarily due to the short travel time of the particles in that ring from eclipse exit to east ansa. We compare the B ring data to the theoretical models of H.H. Aumann and H.H. Kieffer (1973, Astrophys. J.186, 305–311) in order to set constraints on the average particle size and thermal inertia. The rather rapid heating after exit from eclipse points to low-conductivity-particle surfaces, similar to the water frost surfaces of Galilean satellites. If the surface conductivity is indeed low, one cannot determine an upper limit for the particle size through such infrared observations, since only the uppermost millimeters experience a thermal response during eclipse. However, based on these infrared data alone, it is clear that particles of radius equal to a few millimeters or less cannot occupy a significant fraction of the ring surface area, because-regardless of thermal inertia-their thermal response is much faster than observed.  相似文献   

15.
For the future development of Chinese Giant Solar Telescope (CGST) in Western China, a new sky brightness monitor (SBM) has been produced for the site survey for CGST. To critically examine the performance and sensitivity of SBM, we used it in the observation of the annular solar eclipse in Dali City, Yunnan, on 15 January 2010. The observation met good weather conditions with an almost clear sky during the eclipse. The SBM measurement translates into the solar illuminance changes at a level of 2.4×10?4 I?s?1 during the eclipse. The time of the minimal sky brightness in the field of view (FOV) is found consistent with the time of maximum eclipse. Two local sky regions in the FOV are chosen to make a time series of the calibrated skylight profiles. The evolution of the sky brightness thus calibrated also shows good consistency with the eclipse, particularly between the second and the third contacts. The minimal sky brightness in each local sky region took place within half a minute from the corresponding predicted contact time. Such small time delays were mainly caused by occasional cirri. The minimal sky brightness measured during the eclipse is a few millionths of I ?? with standard deviation of 0.11 millionths of I ??. The observation supports that the single-scattering process (optically thin conditions) is the main contributor to the atmospheric scattering. We have demonstrated that many important aerosol optical parameters can be deduced from our data. We conclude that the new SBM is a sensitive sky photometer that can be used for our CGST and coronagraph site surveys.  相似文献   

16.
The presently prevailing theories of sunspots and solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes for solar flare energy.In this paper, we pay attention to the fact that there are large-scale magnetic fields which divide the photosphere into positive and negative (line-of-sight) polarity regions and that they are likely to be more fundamental than sunspot fields, as emphasized most recently by McIntosh (1981). A new phenomenological model of the sunspot pair formation is then constructed by considering an amplification process of these largescale fields near their boundaries by shear flows, including localized vortex motions. The amplification results from a dynamo process associated with such vortex flows and the associated convergence flow in the largescale fields.This dynamo process generates also some of the familiar “force-free” fields or the “sheared” magnetic fields in which the magnetic field-aligned currents are essential. Upward field-aligned currents generated by the dynamo process are carried by downward streaming electrons which are expected to be accelerated by an electric potential structure; a similar structure is responsible for accelerating auroral electrons in the magnetosphere. Depending on the magnetic field configuration and the shear flows, the current-carrying electrons precipitate into different geometrical patterns, causing circular flares, umbral flares, two-ribbon flares, etc. Thus, it is suggested that “low temperature flares” are directly driven by the photospheric dynamo process.  相似文献   

17.
The high-resolution vector magnetograms obtained with the solar telescope magnetograph of the Beijing Astronomical Observatory of the active region AR 4862 on 7 October, 1987, close before and after a solar flare, were used to calculate the electric current densities in the region. Then the relations between the flare and the magnetic fields as well as the electric currents were studied. The results are: (i) the transverse magnetic fields, and hence the longitudinal electric currents in the region before and after the flare, are evidently different, while the longitudinal magnetic fields remain unchanged; (ii) this confirms the result obtained previously that the flare kernels coincide with the peaks of longitudinal electric density in active regions; (iii) the close relation between the flare kernels and the electric currents indicates that the variations of the transverse magnetic fields and the longitudinal electric currents arise not from the general global evolution of the active region, but from the flare. These results tend to the conclusion that the triggering of a solar flare might be related with the plasma instability caused by the surplus longitudinal electric currents at some local regions in the solar atmosphere.  相似文献   

18.
Using results obtained in our earlier paper (Ballester and Kleczek, 1983) and the equipartition principle we attempt to calculate the lower limits of magnetic fields in three solar prominences. The values are then compared with the magnetic fields found by experimental methods. Furthermore, we have calculated by Ampère's law the lower limits of electric currents inside the conical surface where the knot's motion is located. The results obtained are compared with a few determinations of electric currents in prominences, that can be found in the bibliography. An attempt is made to use a three-currents system to explain the configuration of magnetic fields in solar prominences.  相似文献   

19.
The asymmetry of fluxes of solar wind and planetary ions is studied by using the ASPERA-3 observations onboard the Mars Express spacecraft in February 2004 to March 2006. Due to the small scale of the Martian magnetosphere and its induced origin, the flow pattern near Mars is sensitive to the directions of the interplanetary magnetic and electric (-V×B) fields. Asymmetry of the magnetic field draping produces an asymmetry in plasma flows in the plane containing the IMF. The crustal magnetic fields on Mars also influence the flow pattern. Scavenging of planetary ions is less efficient in the regions of strong crustal magnetization and therefore the escape fluxes of planetary ions in the southern hemisphere are smaller. The results of the observations are compared to simulations based on a 3D hybrid model with several ion species.  相似文献   

20.
日食为射电天文提供了一维高空间分辨率太阳射电观测机会.日食射电观测在太阳射电物理的发展上起过重要的作用.文中对日食射电观测的若干重要因素作了介绍和分析.日食射电观测在我国太阳射电天文发展上也起了重要作用.文中简要介绍了在我国组织观测的1958年、1968年、1980年及1987年的太阳射电日食观测及其主要结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号