首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed calculation of the nitric oxide photodissoeiation rate has been made for application to mesospheric and stratospheric photochemistry. It takes into account a new determination of the oscillator strengths of the NO bands and is based on a critical analysis of the solar flux. Moreover it entails a complete determination of the molecular oxygen attenuation allowing for the rotational fine structure including the Voight profile of the Schumann-Runge bands.  相似文献   

2.
We present the first detections of the ground-state H216O (110-101) rotational transition (at 556.9 GHz) and the 13CO (5-4) rotational transition from the atmosphere of Venus, measured with the Submillimeter Wave Astronomy Satellite (SWAS). The observed spectral features of these submillimeter transitions originate primarily from the 70-100 km altitude range, within the Venus mesosphere. Observations were obtained in December 2002, and January, March, and July 2004, coarsely sampling one Venus diurnal period as seen from Earth. The measured water vapor absorption line depth shows large variability among the four observing periods, with strong detections of the line in December 2002 and July 2004, and no detections in January and March 2004. Retrieval of atmospheric parameters was performed using a multi-transition inversion algorithm, combining simultaneous retrievals of temperature, carbon monoxide, and water profiles under imposed constraints. Analysis of the SWAS spectra resulted in measurements or upper limits for the globally averaged mesospheric water vapor abundance for each of the four observation periods, finding variability over at least two orders of magnitude. The results are consistent with both temporal and diurnal variability, but with short-term fluctuations clearly dominating. These results are fully consistent with the long-term study of mesospheric water vapor from millimeter and submillimeter observations of HDO [Sandor, B.J., Clancy, R.T., 2005. Icarus 177, 129-143]. The December 2002 observations detected very rapid change in the mesospheric water abundance. Over five days, a deep water absorption feature consistent with a water vapor abundance of 4.5±1.5 parts per million suddenly gave way to a significantly shallower absorption, implying a decrease in the water vapor abundance by a factor of nearly 50 in less that 48 h. In 2004, similar changes in the water vapor abundance were measured between the March and July SWAS observing periods, but variability on time scales of less than a week was not detected. The mesospheric water vapor is expected to be in equilibrium with aerosol particles, primarily composed of concentrated sulfuric acid, in the upper haze layers of the Venus atmosphere. If true, moderate amplitude (10-15 K) variability in mesospheric temperature, previously noted in millimeter spectroscopy observations of Venus, can explain the rapid water vapor variability detected by SWAS.  相似文献   

3.
Remote observations of the atmospheric water vapour from the Mars orbit were usually carried out to study its global distribution and variability. Measurements of the water vapour abundance onboard the landers have recently become an important complement to the orbital sounding. Narrow-band filter photometry and spectroscopy of the solar radiation from the surface of the planet proved to be a powerful tool in the study of atmospheric water. The Imager for Mars Pathfinder (IMP) was the first instrument to measure its amount from the surface. The Surface Stereo Imager (SSI) onboard the Mars Polar Lander (MPL) was to follow but the spacecraft was lost at landing. Nevertheless significant expertise in the optical measurements of atmospheric H2O was gained during these missions. This paper summarizes this experience emphasizing the radiative transfer aspects of the problem. The results of this study could be of importance for future missions to Mars.  相似文献   

4.
We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 μm window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 μm window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R  2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (?6 +9 ppmv), which is in agreement with recent results by Bézard et al. (Bézard, B., Fedorova, A., Bertaux, J.-L., Rodin, A., Korablev, O. [2011]. Icarus, 216, 173–183) using VEX/SPICAV (R  1700) and contrary to prior results by Bézard et al. (Bézard, B., de Bergh, C., Crisp, D., Maillard, J.P. [1990]. Nature, 345, 508–511) of 44 ppmv (±9 ppmv) using VEX/VIRTIS-M (R  200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 μm window and abundances determined from different water vapour absorption features within the near infrared window. We find that water vapour abundances determined over the peak of the 1. 18 μm window results in plots with less scatter than those of the individual water vapour features and that analyses conducted over some individual water vapour features are more sensitive to variation in water vapour than those over the peak of the 1. 18 μm window. No evidence for horizontal spatial variations across the night side of the disk are found within the limits of our data with the exception of a possible small decrease in water vapour from the equator to the north pole. We present spectral ratios that show water vapour absorption from within the lowest 4 km of the Venus atmosphere only, and discuss the possible existence of a decreasing water vapour concentration towards the surface.  相似文献   

5.
M-star spectra, at wavelengths beyond 1.35 μm, are dominated by water vapour, yet terrestrial water vapour makes it notoriously difficult to obtain accurate measurement from ground-based observations. We have used the short-wavelength spectrometer on the Infrared Space Observatory at four wavelength settings to cover the  2.5–3.0 μm  region for a range of M stars. The observations show a good match with previous ground-based observations and with synthetic spectra based on the Partridge & Schwenke line list, although not with the SCAN line list. We have used a least-squared minimization technique to systematically find best-fitting parameters for the sample of stars. The temperatures that we find indicate a relatively hot temperature scale for M dwarfs. We consider that this could be a consequence of problems with the Partridge & Schwenke line list which leads to synthetic spectra predicting water bands that are too strong for a given temperature. Such problems need to be solved in the next generation of water vapour line lists, which will extend the calculation of water vapour to higher energy levels with the good convergence necessary for reliable modelling of hot water vapour. Then water bands can assume their natural role as the primary tool for the spectroscopic analysis of M stars.  相似文献   

6.
Nitric oxide is formed in the atmosphere through the ionization and dissociation of molecular nitrogen by galactic cosmic rays. One NO molecule is formed for each ion pair produced by cosmic ray ionization.The height-integrated input (day and night) to the lower stratosphere is of the order of 6 × 107 NO molecules cm?2/sec in the auroral zone (geomagnetic latitude Φ ? 60°) during the minimum of the sunspot cycle and 4 × 107 NO molecules cm?2/sec in the subauroral belt and auroral region (Φ? 45°) at the maximum of solar activity. The tropical production is less than 10?7 NO molecules cm?2/sec above 17 km and at the equator the production is only 3 × 106NO molecules cm?2/sec.  相似文献   

7.
8.
In the laboratory, reactions with flourine species proceed rapidly with high rates but under mesospheric conditions the effeciency of these compounds is low due to the rapid formation of HF and to the lack of reactivity of this species. Even if diffusion processes are included, the result of calculations leads to fluorie concentrations typically less than 20 cm?3. The low photodissociation coeffecient of HF leads to the expectation of a scale height of HF greater than or equal to the mean scale height. If the troposphere appears to be a sink for hydrofluoric acid, the maximum value of fluorine is obtained with a downward flux of 1.3 × 108 HF atoms cm?2 sec?1 at the level of the clouds.  相似文献   

9.
This Letter reviews the results by computer simulations on the three-body problem carried out at Leningrad University Astronomical Observatory (Anosova, 1986, 1988, 1989). The intensive systematic studies of triple systems with negative and positive total energies have yielded the general features of the evolution of these systems. The processes of formation of the wide and hard binaries have been studied in details. The scenario of the general class of the final motions of the triple systems with negative total energy is considered, the necessary conditions of disruption of these systems are formulated.  相似文献   

10.
Small dielectric ice particles of radius ~0.25 m, which are known to be present in the mesophere, scatter a fraction of incident sunlight in backward directions that do not reach the Earth. This back-scattered fraction is rigorously calculated using Mie theory for a uniform distribution of particles distributed over a sunlit hemisphere. Such calculations provide necessary information for estimating equilibrium surface temperatures of the Earth under different conditions.  相似文献   

11.
The behavior of nitrogen oxides in the stratosphere and mesosphere is discussed with the aid of a model which introduces the photodissociation of nitric oxide and the formation of nitric acid. The profiles of the nitric oxide, nitrogen dioxide and nitric acid concentrations are sensitive to the values of the eddy diffusion coefficients which are adopted. The evaluation of the various reactions which enter the stratosphere shows the role of the formation of nitric acid which is related to the production of OH radicals in the lower stratosphere. An increase of the water vapor in the stratosphere leads to a decrease of nitric oxide and nitrogen dioxide.  相似文献   

12.
Rocketsonde-derived temperature fluctuations within Northern Hemisphere are examined for the stratosphere and lower mesosphere in seasonal basis for the years 1969–78, inclusive. The rocketsonde records presentd here are homogeneous because of are mostly based on the Datasone system. It is suggested that Stratospheric-lower mesospheric temperature variations are about one order of magnitude larger than recorded in the literature before. The main feature in all seasons is that the cooling trend has maximum values at low latitudes in the lower Mesosphere.  相似文献   

13.
The first star formation in the Universe is expected to take place within small protogalaxies, in which the gas is cooled by molecular hydrogen. However, if massive stars form within these protogalaxies, they may suppress further star formation by photodissociating the H2. We examine the importance of this effect by estimating the time-scale on which significant H2 is destroyed. We show that photodissociation is significant in the least massive protogalaxies, but becomes less so as the protogalactic mass increases. We also examine the effects of photodissociation on dense clumps of gas within the protogalaxy. We find that while collapse will be inhibited in low-density clumps, denser ones may survive to form stars.  相似文献   

14.
Mm-wave spectra of HDO in the Venus mesosphere (65-100 km) were obtained over the period March 1998 to June 2004. Each spectrum is a measurement of the hemispheric-average H2O vapor mixing ratio in the Venus mesosphere. Observations were conducted for wide ranges of Venus solar elongations (46° W to 47° E), and fractional disk illuminations (f=0% to 99%), yielding water vapor abundances on 17 dates and over a full range of local solar time (LST) at the sub-Earth point on Venus. Our mesopheric H2O values are more numerous and far more precise than the earliest mm-derived H2O measurements [Encrenaz, Th., Lellouch, E., Paubert, G., Gulkis, S., 1991. First detection of HDO in the atmosphere of Venus at radio wavelengths: An estimate of the H2O vertical distribution. Astron. Astrophys. 246, L63-L66; Encrenaz, Th., Lellouch, E., Cernicharo, J., Paubert, G., Gulkis, S., Spilker, T., 1995. The thermal profile and water abundance in the Venus mesosphere from H2O and HDO millimeter observations. Icarus 117, 162-172], allowing an analysis of variability that was previously impossible. Measured 65-100 km H2O ranged from 0.0±0.06 to 3.5±0.3 ppmv, with significantly different variability than found in previous infrared (lower altitude, cloudtop) studies. Strong global variability on a 1-2 month timescale is clear and unambiguous. A limited number of excellent s/n measurements tentatively indicate the 1-2 month variability manifests most rapidly as change in the lower mesosphere, and more slowly as change in the upper mesosphere. Neither long term (1998-2004) nor diurnal variability in 65-100 km H2O is evident. While six-year and/or diurnal variabilities are not ruled out, they are weaker than the 1-2 month timescale variation. These conclusions are supported by initial (2004) sub-mm measurements.  相似文献   

15.
Panayotis Lavvas 《Icarus》2009,201(2):626-633
By comparing observations from the Cassini imaging system, UV spectrometer, and Huygens atmospheric structure instrument, we determine an apparent radius of ∼40 nm, an imaginary index <0.3 at 187.5 nm and a number density of ∼30 particles cm−3 for the detached haze layer at 520 km in Titan's mesosphere. We point out that the detached haze layer is coincident with a local maximum in the measured temperature profile and show that the temperature maximum is caused by absorption of sunlight in the detached haze layer. This rules out condensation as the source of the layer. The derived particle size is in good agreement with that estimated for the size of the monomers in the aggregate particles that make up the main haze layer. Calculations of the sedimentation velocity of the haze particles coupled with the derived number density imply a mass flux , which is approximately equal to the mass flux required to explain the main haze layer. Because the aerosol size and mass flux derived for the detached layer agree with those determined for the main layer, we suggest that the main haze layer in Titan's stratosphere is formed primarily by sedimentation and coagulation of particles in the detached layer. This implies that high-energy radical and ion chemistry in the thermosphere is the main source of haze on Titan.  相似文献   

16.
17.
In the history of Mars exploration its atmosphere and planetary climatology aroused particular interest. In the study of the minor gases abundance in the Martian atmosphere, water vapour became especially important, both because it is the most variable trace gas, and because it is involved in several processes characterizing the planetary atmosphere. The water vapour photolysis regulates the Martian atmosphere photochemistry, and so it is strictly related to carbon monoxide. The CO study is very important for the so-called “atmosphere stability problem”, solved by the theoretical modelling involving photochemical reactions in which the H2O and the CO gases are main characters.The Planetary Fourier Spectrometer (PFS) on board the ESA Mars Express (MEX) mission can probe the Mars atmosphere in the infrared spectral range between 200 and 2000 cm?1 (5–50 μm) with the Long Wavelength Channel (LWC) and between 1700 and 8000 cm?1 (1.2–5.8 μm) with the Short Wavelength Channel (SWC). Although there are several H2O and CO absorption bands in the spectral range covered by PFS, we used the 3845 cm?1 (2.6 μm) and the 4235 cm?1 (2.36 μm) bands for the analysis of water vapour and carbon monoxide, respectively, because these ranges are less affected by instrumental problems than the other ones. The gaseous concentrations are retrieved by using an algorithm developed for this purpose.The PFS/SW dataset used in this work covers more than two and a half Martian years from Ls=62° of MY 27 (orbit 634) to Ls=203° of MY 29 (orbit 6537). We measured a mean column density of water vapour of about 9.6 pr. μm and a mean mixing ratio of carbon monoxide of about 990 ppm, but with strong seasonal variations at high latitudes. The seasonal water vapour map reproduces very well the known seasonal water cycle. In the northern summer, water vapour and CO show a good anticorrelation most of the time. This behaviour is due to the carbon dioxide and water sublimation from the north polar ice cap, which dilutes non-condensable species including carbon monoxide. An analogous process takes place during the winter polar cap, but in this case the condensation of carbon dioxide and water vapour causes an increase of the concentration of non-condensable species. Finally, the results show the seasonal variation of the carbon monoxide mixing ratio with the surface pressure.  相似文献   

18.
Nighttime volume emission rates and rotational temperatures, obtained from simultaneous observations of molecular oxygen and hydroxyl airglow at Almaty (43.25°N, 76.92°E) and Sierra-Nevada (37.2°N, 356.7°E), along with ionospheric density derived from foF2 in the vertical sounding ionograms over Almaty are analysed to study the variability and coupling of parameters observed in the upper mesosphere and ionosphere during the period of February - April, 2000.Ionospheric critical frequency measurements and airglow observations by the Mesopause Rotational Temperature Imager (MORTI) at Almaty and the Spectral Airglow Temperature Imager (SATI) at Sierra-Nevada Observatories show an increase in long-period planetary wave (PW) activity from the end of February until the middle of March, 2000.Very good agreement was found in the temporal variations of emission rates and rotational temperatures from March 1-15, 2000 measured at the Almaty and Sierra-Nevada sites. Similar perturbations could also be seen in the ionospheric critical frequency (ΔfoF2) obtained as a difference between current foF2 values and an ionospheric background level.The perturbations observed have been interpreted employing the Met office stratospheric model results. Latitudinal structure of a quasi 5-day wave was identified, for which the first-symmetric-mode amplitude and symmetric behaviour of phase are in good agreement with theoretical prediction. The analysis of the Met office stratospheric data indicate the presence of westward-propagating PW with periods of ∼5 and 10 days during the period of interest. The temporal correlation between planetary scale oscillations observed in the datasets examined (ionospheric, optical and meteorological) suggest dynamical coupling with the stratosphere. A negative disturbance in ΔfoF2 of ∼25% observed 1 day before a sharp increase in the MORTI mesospheric rotational temperature registered on March 10 at Almaty, is also discussed in the context of the possible stratosphere/mesosphere/ionosphere coupling.  相似文献   

19.
A one-dimensional, time-dependent calculation which includes the dynamics of turbulence has been developed. The dynamical parameters together with the mass density and temperature structure measured during the ALADDIN I program are inputs to the calculations of the vertical distribution of [O], [O2], [O2(1Δg)], [OH] and [Ar] between 50 and 150 km. The results of the calculations are compared with measurements of these species distributions made during the ALADDIN I program and are also related to reported results at other times. Good to excellent agreement is found when the calculated profiles are compared with the measurements. This agreement supports the contention of the authors that the turbulent parameters measured from chemical trail fluctuations are due to atmospheric turbulence and are appropriate for use in model calculations. Significant changes in species concentrations occur when the eddy diffusion coefficient is increased. In particular, an increase in molecular oxygen and a reduction in atomic oxygen and helium are noted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号