首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown recently that non-adiabatic particles in the Earth's magnetotail drift across the tail roughly as predicted for adiabatic particles with 90° pitch angles. In this paper we show that this result implies the existence of an approximate invariant of the motion. Adding the effect of convection associated electric fields, we can then obtain the approximate bounce averaged motion of non-adiabatic particles in the magnetotail. Thus the particle motion and energization due to combined magnetic and electric drifts in the magnetotail are easily predicted.  相似文献   

2.
The paper deals with a nonlinear instability of quasi-monochromatic VLF signals and whistlers in the Earth's magnetosphere due to induced scattering. The instability growth rates and the threshold values of the signal amplitude at which the instability occurs have been found. The instability is shown to be more effectively excited when the initial transverse VLF wave transforms into plasma oscillations at the lower hybrid resonance (LHR) frequency and may be responsible for the phenomena such as trigger LHR emission, the amplitude and phase modulation of artificial VLF signals and be the origin of some types of discrete VLF signals.  相似文献   

3.
In an earlier paper, Bowers (1973), ion plasma oscillations were found to be unstable in the steady state developed by Cowley (1972) for the neutral sheet in the Earth's geomagnetic tail. In this paper a similar stability analysis is carried out but for a different steady state, suggested by Dungey, with the result that unstable waves with frequencies near the electron plasma frequency are found. In the Dungey steady state the current necessary for magnetic field reversal is carried by plasma originating from both the magnetosheath and the lobes of the tail. This modifies the steady state proposed by Alfvén and subsequently developed by Cowley in which all the current is carried by plasma from the lobes of the tail thereby fixing the cross-tail potential Φ. With magnetosheath plasma present the value of Φ is no longer fixed solely by parameters in the lobes of the tail but the cross-tail electric field is still assumed localised in the dusk region of the sheet as in the Cowley model due to the balance of charge required in the neutral sheet. The value of Φ can be expected to increase as magnetic flux is transported to the tail which inflates and causes flux annihilation because the magneto-sheath plasma in the neutral sheet has insufficient pressure to keep the two lobes of the tail apart. The Vlasov-Maxwell set of equations is perturbed and linearised enabling a critical condition for instability to be found for modes propagating across the tail. Typically, this condition requireseΦ≳KT m whereT m is the temperature of magnetosheath electrons. The instability occurs in the presence of cold plasma which hasE×B drifted into the neutral sheet from the lobes of the tail. This contrasts with the usual two stream instability which is stabilised by the cold plasma. Once precipitated the instability may be explosive provided current disruption occurs, for then a further increase in Φ will result which drives a greater range of wave numbers unstable thereby causing even more turbulence and an even larger cross-tail electric field. Because of this behaviour the instability may be a trigger for a substorm.  相似文献   

4.
The temperature dependence of the binary recombination coefficient, α2, for the reaction NO++NO2? → products has been obtained over the range 185–530 K. It is found that the corresponding mean cross section σ is described by the power law σ ? A · T?0.9, and that α2 ? B · T?0.4. Data has also been obtained for two cluster ion recombination reactions which indicate that their recombination cross sections are only about 40% larger than for the parent ions at a given temperature, the cross sections for these reactions also apparently increasing with decreasing temperature. In the light of this data and by considering the most probable positive and negative ions existing at various altitudes up to 90km in the atmosphere, the most appropriate ionic recombination coefficients in various altitude ranges are deduced. Thus, between 30 and 90 km, where the recombination process is two-body, the coefficient varies over the narrow range 5–9 × 10?8 cm3s?1, while below 30 km the process is predominantly three-body with an effective two-body rate increasing rapidly to a maximum value ≈3 × 10?6 cm3s?1 in the troposphere, these deductions being based on published laboratory determinations of three-body recombination coefficients.  相似文献   

5.
Terrestrial myriametric radiation (non-thermal continuum) observed by the GEOS 1 spacecraft is used to determine the radial profile of plasma density at the equatorial plasmapause. The method utilises the properties of a radio window through which the radiation propagates. The radial density profile obtained by remote sensing is compared with that implied from natural electrostatic emissions as the spacecraft approaches the equatorial source region. The TMR profile appears to be that of the cold plasma whereas the frequencies of the intense non-equatorial emissions beyond the plasmapause are governed by the hot and cold components. Ray-tracing and polarisation computations indicate that a simplistic interpretation of direction-finding measurements using the spinning dipole technique could lead to erroneous source directions under certain circumstances. In such cases if the spacecraft orientation is known corrections can be applied to yield the true direction.  相似文献   

6.
7.
Propagation and amplification of the pearls are analysed, with diffusion of wave trains in the k-space taken into account. The competition between the instability-induced amplification and the diffusion determines the values of magnetospheric parameters at which the appearance of pearls is possible. Diffusion is particularly large under conditions of a thin plasmapause and generation of pearls there is hindered or is not possible at all.  相似文献   

8.
Using the time observations obtained by 8 instruments in the Chinese Joint System during the years 1966–1980, we analyse the Moon's zonal tidal effect. The results show that the effects of the Mf and Mm waves are obvious. From this, the parameters KC of the zonal tide are estimated and the weighted averages of the 8 instruments are (KC)Mf = 0.909 ± 0.114 and (KC)Mm = 0.905 ± 0.083 respectively.  相似文献   

9.
The topic of this report is that of the influence of noise, and of the finite length and width of the tail on the behaviour of the current sheet.The presence of a weak magnetic field linking through the current sheet leads to plasma containment and counterstreaming, with the consequence that both the plasma temperature and density are increased in the vicinity of the current sheet. The effect of these changes on the relationship between steady bulk parameters is discussed.The finite length of the tail significantly modifies the equilibrium situation in the near Earth tail, for streams mirroring at the Earthwards end of field lines lead to a reduction of merging. The finite width of the tail restricts the region of reduced merging rate to a triangular shaped area extending from the dusk magnetopause into the tail. The finite tail width is also important in the more distant tail, where magnetosheath particles which penetrate the magnetopause ends of the current sheet may become major current carriers, especially if Bz, is small and northwards.Finally, it is shown that the above factors, together with a non-adiabatic current sheet, are important to our understanding of the temporal behaviour of the tail.  相似文献   

10.
A model for solar wind flow around the magnetopause incorporating a stagnation line at the frontside magnetopause is used to derive a formula for the electric field intensity and polar cap potential drop. These relationships are compared to experimental data from polar orbiting satellites. The relation between solar wind parameters and auroral arc velocity is also studied.  相似文献   

11.
Hydrodynamic and electrodynamic problems of solar wind interaction with the Earth's magnetosphere on the day-side are investigated.The initial fact, well established, is that the density of the magnetic field energy in the solar wind is rather small. Magnetic field intensity and orientation are shown to determine the character of the solar wind flow around the magnetosphere. For mean parameters of the wind, if the tangential component of the magnetic field is more or equal 5γ, the flow in the magneto-sheath will be laminar. For other cases the flow is of a turbulent type.For turbulent flow, typical plasma parameters are estimated: mean free path, internal scale of inhomogeneities and dissipated energy. The results obtained are compared with experimental data.For the case of laminar flow, special attention is paid to the situation when magnetic fields of the solar wind and Earth are antiparallel. It is suggested, on the basis of solid arguments, that the southward interplanetary field diffuses from the magnetosheath into the Earth's magnetosphere. These ideas are used for the estimation of the distance to the magnetopause subsolar point. A detailed comparison with results of observation is made. The coincidence is satisfactory. Theoretical investigation has been made to a great extent for thin magnetopause with thickness δRHe-gyroradius of an electron.It is shown that during magnetospheric substorms relaxation oscillations with the period τ = 100–300 sec must appear. A theorem is proved about the appearance of a westward electrical field during the substorm development, when the magnetosphere's day-side boundary moves Earthward and about the recovery phase, when the magnetopause motion is away from the Earth, when there is an eastward electrical field.In the Appendix, plasma wave exitation in the magnetopause is considered and conductivity magnitudes are calculated, including the reduction due to the scattering by plasma turbulence.  相似文献   

12.
The interaction of energetic auroral protons with the atmosphere is investigated. The results of a random number algorithm that describes the proton-hydrogen interconversion reactions as the beam loses energy are adopted to construct an energy deposition curve applicable over a wide range of initial proton energies. lonization rates and production rates of ejected electrons are computed and emission rates of hydrogen Balmer alpha and beta lines are evaluated using recently available low energy cross-sections.  相似文献   

13.
From the viewpoint of dynamical topology, planetary magnetospheres are classified into three: Types 1, 2 and 3. When the rotation vector and dipole moment of a planet and the velocity vector of the solar wind are denoted as Ω, M, and V, respectively, the planetary magnetosphere with ΩMV is called Type 1. The magnetospheres of the present Earth, Jupiter, and Uranus at its equinoctial points belong to this type. The magnetosphere with ΩMV is called Type 2, which includes the Uranian magnetosphere at its solstitial points. The magnetosphere with ΩM and ΩV is called Type 3. The Earth's palaeomagnetosphere is considered to have experienced Type 3 during excursions and transition stages of palaeomagnetic polarity reversals. In the Type 3 magnetosphere, drastic diurnal variations are expected in configurations of the dayside cusps, tail axis, neutral sheet, polar caps, and so on. A possible relation between the Type 3 palaeomagnetosphere and palaeoclimate of the Earth during polarity reversals and geomagnetic excursions is suggested. It is also suggested that the heliomagnetosphere during polarity reversals of the general field of the Sun exhibits a drastic configuration change similar to the Type 3 palaeomagnetosphere of the Earth. A relation between the perpendicular condition ΩM and magnetic variable stars and pulsars is briefly discussed.  相似文献   

14.
Direct photolysis of O3 and quenching of O(1D) by N2 provide abundant sources of fast oxygen atoms for the Earth's lower atmosphere. The concentration of atoms with energy above 0.7 eV may exceed the concentration of O(1D) for all altitudes below 18 km and these atoms may play an important role in lower atmospheric chemistry. Distribution functions for O(3P) are given for the energy interval 0.1-1.3 eV, for a range of altitudes from 0 to 62 km.  相似文献   

15.
Studies of the boundary layers in the vicinity of the Earth's dayside magnetopause are important in determining the nature of the processes which couple the magnetosphere to the flowing solar wind, thereby driving magnetospheric convection. In this paper we examine theoretically the magnetic field and plasma properties expected in the boundary regions for various models involving either diffusion or reconnection at the boundary. For diffusion models the transport of magnetosheath momentum across the magnetopause will result in field shears on either side of the boundary, the field rotations being in opposite senses on either side relative to the undisturbed fields. The directions of these rotations depend upon location at the magnetopause relative to the momentum transfer region and to the noon meridian. In reconnection models the effect of the tension of the open boundary layer field lines must be taken into account in addition to the magnetosheath flow, but on the super-Alfvénic flanks of the magnetosphere the latter still dominates, so that qualitatively similar effects will occur in the two models. More detailed, quantitative or statistical studies are then required to distinguish the two models in this regime. In the sub-Alfvénic dayside region, however, open field tension effects will dominate in reconnection models such that boundary layer field and plasma properties will then be determined mainly by the magnetosheath magnetic field configuration. In particular the East-West flow in the magnetospheric boundary layer will be controlled largely by the East-West field in the magnetosheath, leading to flow reversals across the magnetopause in some quadrants of the magnetopause. This behaviour is directly related to the Svalgaard-Mansurov effect and is a signature unique to reconnection models. The boundary layer fields are also expected to tilt towards the field on the opposite side of the boundary in these models on the dayside. “Toward” tilting can also occur in this regime in diffusion models, but “away” tilting, a signature unique to dayside diffusion, should also occur equally frequently. Finally, we briefly discuss previously published high-resolution ISEE 1 and 2 data from the boundary regions in the light of our results. We find that “toward” tilting generally occurs in boundary region crossings previously identified as being reconnection-associated and we present some examples in which the above unique reconnection signature has been observed. During impulsive FTE-like events, however, the field may tilt in either direction, possibly as a result of field line twists, thus complicating our simple picture in this case. We also show that the “reverse draping” observations presented by Hones et al. (1982) approximately satisfy the open magnetopause stress balance conditions.  相似文献   

16.
Fluorescent emissions from nitric oxide appear imposed upon the Rayleigh backscattered spectrum of the earth's atmosphere between 250 and 300 nm in wavelength. Satellite instruments designed to monitor the global ozone distribution can routinely observe these signals although techniques for exploiting the data are not yet available. Application of a radiative transfer equation developed for an atmosphere including absorption by ozone, molecular scattering, and nitric oxide fluorescence shows the three most prominent NO emissions relative to the 250–300 nm backscattered sunlight to be the (1,4), (1,6), and (0,3) gamma bands. Analysis of the contribution function for each emission band indicates that the fluorescent signals can provide useful information on the magnitude and variability of nitric oxide between 40 and 140 km in altitude.  相似文献   

17.
Detailed magnetic fields in the Earth's tail are calculated from a proposed model containing Beard's tail surface and a current sheet inferred from satellite observations. The component inside and perpendicular to the neutral sheet permits us to construct the drift pattern in the magnetic equatorial plane for charged particles. The computed results are in reasonable agreement with the experimental results, although some deviations are noted.  相似文献   

18.
An estimate of an upper bound on the length of the Earth's magnetotail has been made under the assumptions that (1) the flux of open magnetic field lines in the polar caps never vanishes and (2) the annihilation of the open field line flux is extremely low during magnetically quiet periods. These two basic assumptions are discussed and justified. It is found that the tail may be as long as 6000 Re (0.25 a.u.) after a prolonged quiet time period. On the other hand, the length of the shortest tail, which would result from a sequence of strong magnetospheric substorms, is estimated to be ~ 600 Re. These events are thus capable of shortening the tail by an order of magnitude.  相似文献   

19.
The nonlinear properties of electron acoustic waves in a magnetized plasma consisting of hot electrons, hot ions, and cold electrons are investigated. Using a fluid-guiding center model for the cold electrons and Boltzmann distributions for the hot species, a set of nonlinear mode-coupling equations is derived. Monopole and dipole-vortex solutions are shown to exist for the system of nonlinear equations. Spectrum cascade by mode-coupling in the electron acoustic wave turbulence is investigated. Relevance of our investigation to broadband electrostatic noise (BEN) in the geomagnetic tail is discussed.  相似文献   

20.
The equation of momentum balance and magnetic flux conservation are given for a static tail model with an isotropic plasma sheet. The possibility of magnetic field leakage into the solar wind and across the neutral sheet is allowed. Numerical integrations for a wide variety of adjustable model parameters are presented that give the dependence on distance from Earth of all tail parameters (field strength inside and outside of the plasma sheet, plasma pressure, plasma sheet area, tail radius, and normal field component to the neutral sheet). The model gives good agreement with the observed distance dependence of the tail field strength, and accounts for the scatter in the data in terms of a mixture of the fields inside and outside the plasma sheet in the data averages. However, compared with the present interpretations of the observations the model gives a too large plasma pressure at large distances and a too small normal component to the neutral sheet. The discrepancies imply that plasma flow and/or pressure anisotropy are required for an adequate model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号