首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daily observations of a grid of scintillating sources during the period January–August 1971 indicate that enhancements in scintillation index which cannot be related to corotating structure, are related to interplanetary shock waves associated with solar flares. Only 3 enhancements in scintillation index associated with shock waves were observed during the eight months period of observations.  相似文献   

2.
A comprehensive survey of Skylab S-054 soft X-ray images was performed to investigate the characteristics of coronal enhancements preceding solar flares. A search interval of 30 min before flare onset was used. A control sample was developed and tests of the statistical results performed. X-ray images with preflare enhancements were compared with high resolution H images and photospheric magnetograms.The results are as follows: preflare X-ray enhancements were found in a statistically significant number of the preflare intervals, and consisted of one to three loops, kernels or sinuous features per interval. Typically, the preflare feature was not at the flare site and did not reach flare brightness. There was no systematically observed time within the preflare interval for the preflare events to appear and no correlation of preflare event characteristics with the subsequent flare energy. Gas pressures of several preflare features were calculated to be on the order of several dyne cm–2, typical of active region loops, not flares. These results suggest that observations with both high spatial resolution and low coronal temperature sensitivity are required to detect these small, low pressure enhancements that preceded the smaller flares typical of the Skylab epoch. H brightenings were associated with nearly all of the preflare X-ray enhancements. Changing H absorption features in the form of surges or filament activations were observed in about half of the cases. These results do not provide observational support for models which involve preheating of the flare loop, but they are consistent with some current sheet models which invoke the brightening of structures displaced from the flare site tens of min before onset.  相似文献   

3.
New information obtained about >500 keV electron intensity enhancements, which have been observed intermittently close to the outer edge of the electron radiation belt, is used in conjunction with an earlier statistical study by Brown and Stone (1972) to investigate processes which could lead to such structures. The enhancements are typically of ~20 sec duration and occur in a very narrow invariant latitude band, maximally 2° wide. The intensity increase relative to the “normal” background level is up to a factor 10, and the “spike” frequency of occurrence is strongly local time dependent, with more spikes observed in the night and dusk-noon sectors than in the noon-dawn sector. The processes investigated quantitatively are distortions of the magnetospheric topology in the equatorial region, wave-particle interactions and the effects of ionospheric currents. It is shown that the various processes which contribute to equatorial field disturbances can explain the observations.  相似文献   

4.
A. C. Riddle 《Solar physics》1974,36(2):375-381
The slowly varying component of solar centimeter wavelength radiation can often be attributed to thermal emission from density enhancements above an active region. This assertion is justified by the success in reproducing the observations by ray tracing calculations in appropriate coronal models. Similar components have been observed at meter wavelengths and thermal radiation from density enhancements has again been suggested as the emission mechanism. However ray tracing calculations at meter wavelengths, unlike those at centimeter wavelengths, must include both refraction and scattering effects for realistic modelling. In this study, in which scattering is included for the first time, it is shown that scattering may lead to lower emission from density enhancements rather than higher emission as predicted by models in which refraction alone is considered. This strongly suggests that the emission observed at meter wavelengths is of non-thermal origin.  相似文献   

5.
L. A. Hall 《Solar physics》1971,21(1):167-175
Measurements of flare-related impulsive enhancements in solar emission lines in the extreme ultraviolet, observed from the satellite OSO-III, are reported. The enhancement of a line, expressed in percent of the total disk intensity in the line, is of the same order of magnitude as the flare area, expressed in heliocentric square degrees. Rise-times and decay-times of impulsive enhancements average about 2 min and 5 min, respectively. The maximum enhancements of radiation from ions in the chromosphere-corona transition region precede the H maximum by an average of 2 min, and occur in the same period of time as the hard component of solar X-rays and the impulsive microwave bursts. Coronal lines in the extreme ultraviolet are less impulsive than the transition region lines in flare-related enhancements and their maxima follow the H maximum.  相似文献   

6.
Observations of energetic-ion intensity enhancements (E 290 keV) associated with solar flare generated shock waves (solar flare ESP events), obtained during nearly a decade by the APL/JHU instruments on board the Earth orbiters IMP-7 and 8, are incorporated in this work in order to examine the role of the heliolongitude depended large scale shock morphology with relation to the upstream interplanetary magnetic field in the formation of these ESP events. It is shown that a clear east-west solar hemisphere asymmetry is present in the distribution of the ESP relative intensity enhancements with respect to the heliolongitudes of the shock wave source-flare sites. The large ion-intensity enhancements superimposed on the ambient solar flare ion population are preferentially associated with solar flare sites located to the east of the spacecraft meridian, whereas on the average only weak ESP events are associated with solar flare sites to the west of the spacecraft meridian. The observed asymmetry and its implications on the dominant processes for the generation of the solar flare ESP events are discussed on the basis of the presented extensive survey.  相似文献   

7.
We study interplanetary (IP) solar radio type II bursts from 2011?–?2014 in order to determine the cause of the intense enhancements in their radio emission. Type II bursts are known to be due to propagating shocks that are often associated with fast halo-type coronal mass ejections (CMEs). We analysed the radio spectral data and the white-light coronagraph data from 16 selected events to obtain directions and heights for the propagating CMEs and the type II bursts. CMEs preceding the selected events were included in the analysis to verify whether CME interaction was possible. As a result, we were able to classify the events into five different groups. 1) Events where the heights of the CMEs and type II bursts are consistent, indicating that the shock is located at the leading front of the CME. The radio enhancements are superposed on the type II lanes, and they are probably formed when the shock meets remnant material from earlier CMEs, but the shock continues to propagate at the same speed. 2) Events where the type II heights agree with the CME leading front and an earlier CME is located at a height that suggests interaction. The radio enhancements and frequency jumps could be due to the merging process of the CMEs. 3) Events where the type II heights are significantly lower than the CME heights almost from the start. Interaction with close-by streamers is probably the cause for the enhanced radio emission, which is located at the CME flank region. 4) Events where the radio enhancements are located within wide-band type II bursts and the causes for the radio enhancements are not clear. 5) Events where the radio enhancements are associated with later-accelerated particles (electron beams, observed as type III bursts) that stop at the type II burst emission lane, and no other obvious reason for the enhancement can be identified.Most of the events (38%) were due to shock–streamer interaction, while one quarter of the events was due to possible CME–CME interaction. The drift rates, bandwidth characteristics, or cross-correlations of various characteristics did not reveal any clear association with particular category types. The chosen atmospheric density model causes the largest uncertainties in the derived radio heights, although in some cases, the emission bandwidths also lead to relatively large error margins.Our conclusion is that the enhanced radio emission associated with CMEs and propagating shocks can have different origins, depending on their overall configuration and the associated processes.  相似文献   

8.
《Planetary and Space Science》1987,35(11):1359-1366
The Low Energy Charged Particle (LECP) experiment on the Voyager 2 spacecraft in the outer heliosphere ( > 10 a.u.) has observed several occasions when there was a peak in the interplanetary ion spectra for ions of energies ∼ 0.5–1.0 MeV. Such enhancements can last for several days, suggesting that at these times particles of these energies dominate the low energy cosmic population in this region of the heliosphere. Two specific cases are discussed. The enhancements seem to be associated with the passage of transient interplanetary shock events, with the ion anisotropies generally showing outflow. The most straight-forward explanation for the observations seems to involve only a propagation effect of ions from the inner to the outer solar system. This conclusion is supported by simple modeling of the propagation of an event observed at 1 a.u. to the spacecraft at ∼ 12 a.u.  相似文献   

9.
A number of meter wavelength solar radio bursts of spectral Type-III have been observed by means of a solar radio spectroscope (40–240 MHz) simultaneously with sudden enhancements of low frequency (164 KHz) field strength (SES's) of Radio Tashkent which are known to take place due to the enhancements of D-layer ionization caused by flare-time solar X-rays.The association between the solar X-ray flares as detected by the SES's and the Type-III meter-wave solar bursts is discussed. It is found that the association of SES's and meter wave solar bursts, which implies the ejection of flare-time electrons towards the photosphere as well as corona, is about 72%.  相似文献   

10.
This paper reports results of an analysis of Skylab observations of coronal bright points made in EUV spectral lines formed in the chromosphere, chromospheric-coronal transition region and corona. The most important result is that the observed bright points exhibited large variations in EUV emission over time scales as short as 5.5 min, the temporal resolution of the data. In most cases strong enhancements in the coronal line were accompanied by strong enhancements in the chromospheric and transition region lines. The intensity variations appear to take place within substructures of the bright points, which most likely consist of miniature loops evolving on time scales of a few minutes. Coronal cooling times derived from the data are consistent with an intermittent, impulsive coronal heating mechanism for bright points.  相似文献   

11.
Type III bursts have been observed in the 30–100 kHz range which show localized enhancements in their spectra. The enhancements exhibited by a series of type III bursts extending over a period of several hours show a consistent decrease in frequency. The rate of this decrease is consistent with the movement of an interplanetary shock. The passage of such a shock by the Earth is suggested by the occurrence of sudden commencements at approximately the expected time.  相似文献   

12.
《Planetary and Space Science》2007,55(14):2164-2172
Both the MARSIS ionospheric sounder and the charged particle instrument package ASPERA-3 are experiments on board the Mars Express spacecraft. Joint observations have shown that events of intense ionospheric electron density enhancements occur in the lower ionosphere of magnetic cusp regions, and that these enhancements are not associated with precipitation of charged particles above a few hundred electron volts (<300 eV). To account for the enhancement by particle precipitation, electron fluxes are required with mean energy between 1 and 10 keV. No ionizing radiation, neither energetic particles nor X-rays, could be identified, which could produce the observed density enhancement only in the spatially limited cusp regions. Actually, no increase in ionizing radiation, localized or not, was observed during these events. It is argued that the process causing the increase in density is controlled mainly by convection of ionosphere plasma driven by the interaction between the solar wind and crustal magnetic field lines leading to excitation of two-stream plasma waves in the cusp ionosphere. The result is to heat the plasma, reduce the electron–ion recombination coefficient and thereby increase the equilibrium electron density.  相似文献   

13.
We analyze Ca ii K-line profiles of one flare and EUV continuum observations of two other flares in order to infer values for the temperature enhancements (over active region values) produced in the upper photosphere around and above the temperature minimum region. The results, obtained through a partial redistribution calculation of the Ca ii K-line profiles and an LTE approach to the continuum observations, show that the flare temperature minimum is depressed some two scale heights below its preflare level, and that substantial temperature enhancements are produced even at this depth. Estimates for the energy release in these photospheric layers are given, and are found to be comparable with that released in chromospheric H and L emission.We then turn our attention to the investigation of possible heating mechanisms which might be responsible for the observed enhancements. Bombardment by both electrons and protons, and irradiation by soft X-rays, are each considered and found to be largely ineffective, due to the large attenuation of flux by photospheric depths, unless new ideas on the precise nature of these mechanisms are invoked, particularly if the same mechanism is also to explain the observed chromospheric emissions. We therefore conclude that it is most likely that some other mechanism must be advocated in order to explain the observed heating. Possibilities for this are (a) heating by EUV radiation, (b) proton beams with low dispersion energy spectra centered around 10–20 MeV, and (c) localized heating at temperature minimum levels.On leave from: Department of Astronomy, The University, Glasgow G12 8QQ, Scotland, United Kingdom.  相似文献   

14.
Benz  Arnold O.  Krucker  Säm 《Solar physics》1998,182(2):349-363
Sensitive observations of the quiet Sun observed by EIT on the SOHO satellite in high-temperature iron-line emission originating in the corona are presented. The thermal radiation of the quiet corona is found to fluctutate significantly, even on the shortest time scale of 2 min and in the faintest pixels. The power spectrum of the emission measure time variations is approximately a power law with an exponent of 1.79±0.08 for the brightest pixels and 1.69±0.08 for the average and the faintest pixels. The more prominent enhancements are identified with previously reported X-ray network flares (Krucker et al., 1997) above the magnetic network of the quiet chromosphere. In coronal EUV iron lines they are amenable to detailed analysis suggesting that the brightenings are caused by additional plasma injected from below and heated to slightly higher temperature than the preexisting corona. Statistical investigations are consistent with the hypothesis that the weaker emission measure enhancements originate from the same parent population. The power input derived from the impulsive brightenings is linearly proportional to the radiative loss in the observed part of the corona. The absolute amount of impulsive input is model-dependent. It cannot be excluded that it can satisfy the total requirement for heating. These observations give strong evidence that a significant fraction of the heating in quiet coronal regions is impulsive.  相似文献   

15.
We studied experimental data on ultra-violet (UV) nightglow in the wavelength range 300-400 nm, and energetic electron fluxes measured by low-altitude polar satellite Universitetskii-Tatiana. From statistical analysis we have found three latitudinal regions of enhanced UV emission at low, middle and high latitudes. Modeling the electron precipitations to the atmosphere gave numerical estimation of the generated UV radiation. We found that the stable and quasi-stable fluxes of electrons precipitating at middle and low latitudes are too weak to explain the observed intensities of UV radiation. The high-latitude UV nightglow with intensity of several kiloRayleighs results from particle precipitation in the regions of aurora and outer radiation belt. The low-latitude UV enhancements of several hundreds Rayleighs can be related to the emission of mesospheric atomic oxygen whose concentration increases substantially at latitudes from 20° to 40°. A mechanism of the mid-latitude UV enhancements is still unknown and requires further investigations.  相似文献   

16.
Solar coronal holes (CHs) are large regions of the corona magnetically open to interplanetary space. The nearly rigid north?–?south CH boundaries (CHBs) of equatorward extensions of polar CHs are maintained while the underlying photospheric fields rotate differentially, so interchange magnetic reconnection is presumed to be occurring continually at the CHBs. The time and size scales of the required reconnection events at CHBs have not been established from previous observations with soft X-ray images. We use TRACE 195 Å observations on 9 December 2000 of a long-lived equatorial extension of the negative-polarity north polar CH to look for changes of ??5 arcsec to >?20 arcsec at the western CHB. Brightenings and dimmings are observed on both short (≈?5 minutes) and long (≈?7 hours) time scales, but the CHB maintains its quasi-rigid location. The transient CHB changes do not appear associated with either magnetic field enhancements or the changes in those field enhancements observed in magnetograms from the Michelson Doppler Imager (MDI) on SOHO. In seven hours of TRACE observations we find no examples of the energetic jets similar to those observed to occur in magnetic reconnection in polar plumes. The lack of dramatic changes in the diffuse CHB implies that gradual magnetic reconnection occurs high in the corona with large (??10°) loops and/or weak coronal fields. We compare our results with recent observations of active regions at CHBs. We also discuss how the magnetic polarity symmetry surrounding quasi-rigid CHs implies an asymmetry in the interchange reconnection process and a possible asymmetry in the solar wind composition from the eastern and western CHB source regions.  相似文献   

17.
The OH (8, 3) band airglow emission has been observed over 1 year at a latitude of 23°S. The average band intensity observed was 385 Rayleighs with a nocturnal range typically less than 100 R. The nocturnal variation in rotational temperature was usually less than 10°K, and the mean temperature was 179°K. The nocturnal variation of intensity is usually uncorrelated with that of the rotational temperature. Time average values of these parameters do, however, show some correlation. On some occasions large post-twilight and pre-dawn intensity enhancements are observed.  相似文献   

18.
Limb observations of the E-region 0I 5577-Å airglow in the polar caps were obtained during 1971 and 1972 from the ISIS-2 satellite. In the southern polar cap the emission rate decreased to a broad minimum of 100 R near solstice, then increased later in the winter. In the northern polar cap a maximum was observed in November. In addition to large daily variations, there were enhancements that lasted several weeks. From a correlation analysis using both satellite data supplemented by the more extensive data base of Mullen et al. (1977,Planet. Space Sci.25, 23) and stratospheric temperatures, it is clear that stratospheric warmings result in polar cap airglow enhancements. The most plausible cause of these airglow enhancements appears to be increased meridional transport of atomic oxygen into the polar cap.  相似文献   

19.
During many nights in October and November 1970 unusual enhancements in sodium nightglow intensity were observed near Belfast. These are discussed in relation to other atmospheric parameters. It is suggested (after Kokin et al., 1971) that instabilities in the atmosphere triggered by a series of solar flares may be the cause, particularly as during this period temperatures in the stratosphere were found to be unstable.  相似文献   

20.
We investigate the organization of the low energy energetic particles (≤1 MeV) by solar wind structures, in particular corotating interaction regions (CIRs) and shocks driven by interplanetary coronal mass ejections, during the declining-to-minimum phase of Solar Cycle 23 from Carrington rotation 1999 to 2088 (January 2003 to October 2009). Because CIR-associated particles are very prominent during the solar minimum, the unusually long solar minimum period of this current cycle provides an opportunity to examine the overall organization of CIR energetic particles for a much longer period than during any other minimum since the dawn of the Space Age. We find that the particle enhancements associated with CIRs this minimum period recurred for many solar rotations, up to 30 at times, due to several high-speed solar wind streams that persisted. However, very few significant CIR-related energetic particle enhancements were observed towards the end of our study period, reflecting the overall weak high-speed streams that occurred at this time. We also contrast the solar minimum observations with the declining phase when a number of solar energetic particle events occurred, producing a mixed particle population. In addition, we compare the observations from this minimum period with those from the previous solar cycle. One of the main differences we find is the shorter recurrence rate of the high-speed solar wind streams (~10 solar rotations) and the related CIR energetic particle enhancements for the Solar Cycle 22 minimum period. Overall our study provides insight into the coexistence of different populations of energetic particles, as well as an overview of the large-scale organization of the energetic particle populations approaching the beginning of Solar Cycle 24.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号