首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
利用2018年1月1日00时~2020年8月31日23时国家级多源融合逐时温度产品和国家级地面气象观测站逐时温度资料,针对平均误差、均方根误差、相关系数、时间误差等指标,对融合温度产品在云南的适用性进行评估。结果表明:融合产品小时温度平均误差介于−1~1℃,均方根误差在1.8℃以下,相关系数在0.95以上;融合产品极值温度在滇西北误差均较大,最高温在1~2月误差大,最低温在5~6月误差最大;极值温度出现时间和实况极值出现时间误差为0 h的占比,最高温和最低温分别是70%和73%;在时间不一致样本中,时间误差在2 h内的占比,最高温和最低温分别是86%和41%,最低温时间误差超过12 h的占40%。综合来看,融合温度产品在云南有较好的适用性,最高温的反演效果优于最低温。受降水、地形和海拔等因素的影响,融合温度产品在云南存在一定的系统性误差。  相似文献   

2.
挑选2018年发生在长江流域的8次大范围降水过程,对国家信息中心二源降水融合产品和多源降水融合产品进行适用性评估。结果表明:(1)降水融合产品对长江流域降水的估算结果平均较实况数值偏小,降水量级越大估算误差也越大,多源降水融合产品与二源降水融合产品相比,估算误差绝对值平均偏小2~3 mm。(2)与二源降水融合产品相比,多源降水融合产品对5 mm以下量级降水的估算准确率提高最显著,其次对40~49.9 mm量级降水估算准确率提高较大。(3)降水融合产品对嘉陵江、岷沱江、长江中游干流区域的估测降水误差相对较小。  相似文献   

3.
基于陕西省391个自动站逐小时降水量观测数据对国家级格点实况三源融合降水产品的适用性进行检验评估,结果表明:融合降水产品与站点观测之间的误差小、相关性高,但融合降水产品的标准差和极大值明显小于站点观测;相关系数较低的站点以区域站为主,国家气象观测站的效果明显优于区域站;误差时空分布和降水特征关系密切,在降水频次增多和强度增大时,融合降水产品相比站点观测的误差增大。将融合降水产品视为一种“预报”,站点观测资料作为“真值”进行分级检验,结果显示:融合降水产品可以较好反映有无降水,随降水量级增大空报率变化平稳,漏报率增长明显,导致TS评分逐渐下降。对典型个例的误差成因分析显示:融合降水产品可以较好地体现降水起止时间及性质、强弱演变趋势,但对雨强较大的区域性降水、分散性局地强降水表现欠佳。多种指标综合显示:融合降水产品小量级降水准确率高,对大雨以上量级降水强度有一定程度削弱;陕南秦巴山地的融合降水产品与站点观测偏差较大,应用中需特别关注。  相似文献   

4.
基于逐小时地面站点降水观测数据和国家气象信息中心研发的5 km多源融合降水实况分析产品,采用算术平均法对2021年6~9月海河流域面雨量进行估算。通过相关系数、平均误差和均方根误差等多种评估指标,客观定量评估多源融合降水实况分析产品在海河流域的适用性。结果表明:多源融合降水实况分析产品与地面观测资料估算的面雨量结果基本一致,能较好地反映2021年6~9月海河流域面雨量的时空变化特征,但在量值上存在高估且随着降水量增加,估算误差也越大。分区对比,融合实况分析产品和站点的误差与子流域的平均降水量、海拔高度和面积密切相关。对于各量级面雨量出现的频次,融合实况分析产品与站点整体相差不大,准确率可以达到90%及以上。总体而言,5 km多源融合降水实况分析产品的质量较高,可进一步应用于海河流域精细化面雨量监测业务中。  相似文献   

5.
利用四川省地面自动站2018年6月—2019年5月的逐小时降水观测资料,在邻近插值和双线性插值对比分析的基础上,从晴雨准确率、降水时空特征、降水分量级检验等多个方面,对国家气象信息中心研制的融合降水实况分析产品在四川地区的适用性进行评估分析.评估结果表明:(1)邻近插值和双线性插值对评估结果影响小.(2)融合降水实况分...  相似文献   

6.
本文利用四川省156个国家地面气象观测自动站2018年逐小时降水资料,从降水产品与观测值的对比、降水产品误差空间特征、降水产品误差月变化、不同降水量级的误差特征等方面,对国家气象信息中心研制的中国区域1h、0.05° × 0.05°分辨率的地面-卫星-雷达三源融合实时降水产品和地面-卫星二源融合快速降水产品在四川区域的适用性进行对比评估。研究结果表明,两套融合降水产品能较好的反映四川区域年内小时降水的时空变化特征,与站点观测降水相比,两套融合降水产品均存在一定程度的低估,且随着降水量级的增大,均方根误差值也相应增大。两套融合降水产品相比,融合了雷达资料的三源融合降水产品各项指标均优于二源融合降水产品,数据质量更高。  相似文献   

7.
利用四川省地面逐小时降水观测资料,对国家气象信息中心研制的空间分辨率分别为0.01°和0.05°的三套逐时融合降水实况分析产品,在2019年8月20~22日引发雅安宝兴洪涝灾害的区域性暴雨天气过程中的表现进行评估分析。结果表明:三套融合降水实况分析产品的强降水落区和走向与站点实况基本一致,能较好地反映降水强弱变化和时空分布特征。三套融合降水实况分析产品的平均晴雨准确率都在85%以上,与站点实况的相关系数均在0.8以上,但均较站点实况存在不同程度的低估。相对而言,融合雷达、卫星、站点数据的0.01°产品最优,融合雷达、卫星、站点数据的0.05°产品次之,只融合卫星、站点数据的0.05°产品最差,可见融合站点数据能在一定程度上改善融合降水实况分析产品的质量。总体而言,融合降水实况分析产品的质量较高,在灾害性天气过程中可作为站点实况的有效补充。  相似文献   

8.
中国区域高分辨率多源降水观测产品的融合方法试验   总被引:5,自引:0,他引:5  
高质量、高分辨率降水产品研制对于数值天气模式检验、水文陆面模拟、山洪地质灾害监测有着重要意义。利用中国近4万自动气象站逐时降水资料、中国雷达定量降水估计和CMORPH卫星反演降水产品,开展0.05°×0.05°和0.01°×0.01°两种高分辨率下的三源降水融合方法研究试验,探讨如何有效引入雷达高分辨率信息来提高降水产品质量。一方面,在0.05°分辨率上,先以自动气象站观测降水数据为基准,采用概率密度函数(PDF)匹配法订正雷达和卫星估测降水产品的系统偏差,将雷达降水产品的偏差从-0.05 mm/h降至-0.008 mm/h;再采用贝叶斯模型平均(BMA)方法融合雷达和卫星降水产品,形成0.05°分辨率的中国区域覆盖完整且最优的联合降水背景场。此外,在0.01°分辨率上,以0.05°分辨率的卫星-雷达贝叶斯模型平均联合降水产品为背景,采用1 km雷达估测降水的空间结构信息进行降尺度,亦能有效提高0.01°分辨率背景场的质量。然后,分别以不同分辨率的卫星-雷达联合降水产品为背景,采用统计方法量化误差估计,再采用最优插值方法融入地面观测。通过2419个中国国家级气象台站的独立样本检验,评估了多种类型的降水资料及融合试验产品在中国地区的质量。结果表明,两种分辨率的三源融合试验产品的精度均优于任何单一来源的降水产品,特别是在站点稀疏地区,降水精度均较融合前有显著提高,达到了较好的融合效果,其中在0.05°分辨率上采用“概率密度函数+贝叶斯模型平均+最优插值”方法的三源融合降水产品整体质量最好,而0.01°分辨率上基于“概率密度函数+贝叶斯模型平均+降尺度+最优插值”方法的三源融合降水产品在强降水监测上更有优势。   相似文献   

9.
我国高分辨率降水融合资料的适用性评估   总被引:4,自引:1,他引:4  
利用国家气象信息中心研制的全国30000多个地面自动站降水与 CMORPH (Climate Prediction Center Morphing technique)卫星反演降水融合而成的融合降水产品,分析了融合降水平均偏差和均方根误差的时空分布特征,探讨了不同降水量级以及站点稀疏区和密集区的融合效果,结果表明:融合降水的平均偏差和均方根误差量值均较卫星反演降水有显著减小,随时间的变化幅度不大且误差的区域性差异减弱;融合降水不同量级降水日数分布接近于地面观测降水,虽高估了雨强小于等于4 mm/d的降水,低估了大于4 mm/d高值降水,但同一量级下的误差比卫星反演降水大幅减小,且随着降水强度的增加改善效果明显;站点密集区的融合降水值主要是取决于地面观测降水;站点稀疏区在没有站点分布时,融合降水值主要取决于卫星反演降水,但随着站点个数增加,地面观测降水在融合降水中所占比重逐渐增大,且超过了卫星反演降水的作用。可见融合降水充分有效利用了地面观测降水和卫星反演降水各自的优势,融合效果明显。  相似文献   

10.
对2020年1-3月CLDAS多源降水融合实况、多源气温融合实况采用平均绝对误差分析、均方根误差分析及相关系数分析等方法进行检验评估,并与2019年同时段多源降水融合实况、多源气温融合实况进行对比分析.结果表明:2月降水多源融合实况较观测实况偏多;3月多源气温融合实况最接近观测实况;西部地区的日最低气温多源融合实况较为接近观测实况.  相似文献   

11.
苏锦兰  张万诚  宋金梅  徐安伦 《气象》2021,47(2):133-142
利用2005—2018年125个国家级台站小时降水观测数据研究云南小时降水时空分布特征。结果表明:云南年总降水量、不同持续时间降水量、极端强降水量及降水日变化空间分布差异很大。年降水量自西北向南增加,雨强自北向南增强,降水时长西部大于东部、南部略大于北部,年降水量受降水时长和雨强共同影响,降水时长影响最强,雨强影响较弱,这种特征在滇西北最突出,但滇东北的降水量与雨强相关更好。云南大部夜雨量多于昼雨量,滇东北和北部边缘夜雨特征最显著;降水日变化特征在云南北部为夜间单峰,西部边缘为清晨单峰,中部为夜间与午后峰值相当的双峰,南部也为夜间和午后双峰,但南部不同区域间主峰和次峰出现时间不同。云南南部降水贡献以短、中历时降水为主,北部则以长、超长历时降水为主。云南短时强降水发生次数的空间分布表现为自西北向东南增加;年发生站次数具有增加趋势,日变化特征为显著单峰,多在傍晚至入夜出现,且极端短时强降水更易在凌晨出现。这些小时降水时空分布特征很大程度上代表了低纬高原地区的降水特征。由于低值天气系统多影响低纬高原中北部,热带天气系统多影响南部,且低纬高原地形复杂,局地热力条件差异明显,这些因素造成该区域小时降水时空分布特征差异显著。  相似文献   

12.
利用四川省地面观测小时和分钟降水数据,针对2019年发生在四川地区的首场区域性暴雨过程,采用多种评估指标对国家气象信息中心研发的九种降水融合产品进行对比评估。结果表明:四种24h降水融合产品(CMPAS_24h_RT05、CMPAS_24h_NRT05、CMPAS_24h_RT01、CMPAS_24h_NRT01)、四种1h降水融合产品(CMPAS_RT05、CMPAS_NRT05、CMPAS_RT01、CMPAS_NRT01)和一种10min降水融合产品(CMPAS_10MIN05)均能较好的反映强降水落区的时空变化趋势,但降水极大值都较实况有一定的低估。总体而言,降水融合产品的质量较高,对强降水有很好的监测能力,累计降水量与实况相当,1h降水融合产品与实况的相关系数超过0.924,晴雨准确率在94.4%以上,10min降水融合产品与实况相关系数为0.85,两种产品的TS评分都随降水量级的增大而降低。对比而言,1km产品优于5km产品,近实时产品优于实时产品,1h产品优于10min产品。1h融合产品的降水合计与24h融合产品降水量一致,10min和1h降水存在不一致的问题,但二者差异不大。  相似文献   

13.
为评估和对比GPM IMERG、ERA5降水数据在云南的适用性,利用2014年4月至2018年6月的地面气象观测数据、GPM IMERG卫星遥感降水产品和ERA5再分析降水数据,采用定量和分类评分7项指标评估GPM IMERG和ERA5日降水产品在云南的适用性.结果表明:2种数据存在小雨日雨量高估,中雨及以上量级雨日雨...  相似文献   

14.
李显风  周自江  李志鹏  潘旸  师春香  沈艳  徐宾  谷军霞 《气象》2017,43(12):1534-1546
利用江西省2015年4月至2016年3月水文站观测降水数据,在小时尺度上,对中国国家气象信息中心研制的5和10 km融合降水产品进行质量评估,同时与美国国家海洋大气局(NOAA)气候预测中心卫星反演降水产品(CMORPH)、中国国家气象信息中心研制的东亚区域多卫星集成降水产品(EMSIP)两套卫星降水产品进行对比评估。研究分析各类降水产品的数据误差及其时空变化规律,验证融合降水产品在特征区域的适用性。研究结果表明:融合降水和卫星降水均能较好地反映年内小时降水的变化趋势,与水文站观测降水相比,四套降水资料均存在一定程度低估,其中卫星降水产品低估较大。融合降水产品的数据质量较高,其中5 km融合降水产品的数据精度(R=0.81,RMSE=2.12 mm·h~(-1),RE=-5.4%)基本优于10 km融合降水产品(R=0.78,RMSE=2.3 mm·h~(-1),RE=-5.1%),卫星降水产品与水文站观测降水存在较大的偏差,CMORPH和EMSIP的相关系数分别仅为0.19和0.24。各降水产品误差具有相同的月变化趋势,融合降水产品的误差变化幅度明显要小于卫星降水产品。四套降水产品的相关性随着降水量级增大而增加,融合降水产品能够准确反映降水的空间结构和中心位置,5 km融合降水产品对强降水的监测能力更具有优势。  相似文献   

15.
西藏地区气象自动站夏季逐时降水资料特征分析   总被引:1,自引:0,他引:1  
本文选用2008、2009年西藏地区具有代表性的5个自动站夏季逐时降水资料分析了两年间逐小时降水出现的频数和降水比率。结果表明:(1)各站的夏季逐时降水频率特征不尽相同但也有规律可循,既处在河谷地区的站点多夜雨,在相对平缓地区的站点逐时降水频率较为分散;(2)各站的夏季逐时降水比率呈短时集中现象,表现出高原地区多短时强对流天气的特征;(3)在有降水发生时次地面温度跟逐时降水频次和降水比率呈良好的负相关,相关系数分别为-0.58、-0.44;相对湿度跟逐时降水频次和降水比率呈良好的正相关,相关系数分别为0.56、0.46。  相似文献   

16.

利用1977年8月—2017年7月江西省83个国家自动气象站的逐时降水资料,分析了江西省小时降水的时空分布特征。结果表明:(1)年均降水小时数大值中心呈沿东、西部山脉的带状分布,江西北部鄱阳湖平原地区小时数相对较少,小时降水强度江西北部和东南部大;(2)小时降水事件平均历时由南向北逐渐增大;短历时(1~6 h)对总降水量的贡献率最高,贡献率空间分布由南向东北方向递减;历时超过6 h的降水事件,随着历时的增长大值中心向江西东北方向移动;(3)江西省小时强降水事件频次分布东高西低,且随着强降水等级的提升,高值中心逐渐北移;(4)小时降水主要出现在下午15—18时,多以短历时降水事件呈现,而中历时(8 h左右)的降水易出现在早晨07—08时;(5)近40 a赣北东部小时降水事件频次和累计降水量增加趋势显著。

  相似文献   

17.
1961-2000年西南地区小时降水变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
根据西南地区112个站点1961-2000年逐时降水资料,分析了不同季节降水时数、小时雨强、极端强降水时数和极端强降水强度的变化趋势.从降水时数变化来看,夏季西南大部分地区如四川盆地西部、云南、贵州南部等地总降水时数有减少趋势,四川盆地东部和川西高原总降水时数增加;整个区域平均趋势为-0.9%/10a.相应地,极端强降...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号