共查询到15条相似文献,搜索用时 46 毫秒
1.
【目的】为更准确预测船舶轨迹,基于RNN、Bi-LSTM和注意力机制,研究一种结合特征注意力机制的RNN-Bi-LSTM的船舶轨迹预测模型。【方法】基于AIS数据构建基于循环神经网络(RNN)与双向长短时记忆网络(Bi-LSTM)的混合神经网络模型,并在混合模型中加入特征注意力机制对数据特征进行权重分配,提升模型对船舶轨迹预测精度。【结果】使用实际运行的船舶AIS数据,对模型的有效性和实用性进行验证,测试集均方误差为2.751×10-5、均方根误差为5.245×10-3,在连续弯道预测中的均方误差为4.359×10-6、均方根误差为2.088×10-3。【结论】结合特征注意力机制的RNN-Bi-LSTM相较于传统的预测神经网络,船舶轨迹预测精度更高,尤其在弯道预测中也表现出较好的符合度。 相似文献
2.
港口是物流供应链中的核心环节,港口服务效率会决定整个物流供应链的效率。本文提出了一种基于海量船舶AIS(Automatic Identification System)轨迹数据的港口服务效率计算框架,利用集装箱船舶AIS轨迹、港口地理信息等海事大数据,采用滑动窗口算法等数据挖掘方法判断船舶在港内的状态,估算出反映港口服务效率的AWT/AST指标,从时间维度对港口服务效率评价,为港口管理运营部门和航运公司决策提供参考。并以上海港、宁波港、深圳港、釜山港为例,采用2018年全年全球5600余艘集装箱船舶的AIS轨迹数据,量化评价4个亚洲集装箱港口的服务效率。结果显示:(1)船舶抵港泊位作业时间近似正太分布,正太分布均值在14~18 h之间,船舶泊位作业时间集中在10~30 h;(2)船舶泊位作业时间与船舶船型大小成正相关,船型越大则泊位作业时间越长;(3) 32%的船舶抵达上海港会发生等待时间,体现上海港集装箱码头整体处于供不应求的状态。宁波港整体服务效率较高,船舶发生等待事件较少。作为区域性枢纽港,釜山港近洋区域性运输频繁使得釜山港抵港船舶频率较高。(4)洋山四期码头为自动化码头,其港口... 相似文献
3.
高精度渔业捕捞强度数据是开展捕捞限额管理的前提与关键,也是海洋渔业资源可持续发展的重要保障.因此,本文以挖掘海洋渔业捕捞强度空间特征为出发点,选用2018年2、4、9和11月典型季节的中国籍6364艘渔船1.8亿条高时空粒度AIS数据.运用专家知识经验、空间统计及数据挖掘分析方法,以广西南岸北部湾渔场、广东沿岸和环海南... 相似文献
4.
随着信息通讯技术的发展,手机成为人类日常生活不可缺少的一部分,人类活动逐渐从现实空间延伸至网络空间,在移动互联网时代,网络空间的上网行为与现实空间的出行行为密不可分。当前个体出行行为预测建模较少考虑上网行为与出行行为间的关系,本文提出一种融合上网行为特征的手机用户停留行为预测模型,通过时空约束定义手机用户的停留行为,在考虑个体出行行为时空偏好的同时,融合手机用户使用的APP组合、上网流量、上网次数等上网行为特征以及天气信息等外部特征,从时间、空间的角度进行特征交叉,构建从特征到模型均具有高可解释性的手机用户停留行为预测模型。实验证明:本文模型预测准确率为80.31%,且在融合上网行为特征、天气等外部因素后,比仅使用个体出行特征进行手机用户停留行为预测提升了12.08%。 相似文献
5.
【目的】针对繁忙航段船舶交通流易受外界环境扰动的难题,提出一种可用于识别船舶交通流脆弱性的预测模型,旨在通过脆弱性辨识,确定最薄弱的航段。【方法】首先采用变分模态分解(VMD)模型将船舶交通流参数序列分解为多个模态分量,然后结合反向传播神经网络(BP)和遗传算法(GA),通过构建约束模型并不断更新各个分量的中心和带宽,实现单个分量的预测,通过应用VMD-BP-GA模型对船舶交通流进行精准预测,并验证其合理性和有效性。【结果】在繁忙航段,本研究提出的VMD-BP-GA模型精准预测船舶交通流脆弱性的方法,相较于传统模型表现出更低的预测误差值,其中在航段流量预测方面,本研究模型的平均绝对误差(MAE)最低达到2.095%,均方根误差(RMSE)最低达到2.610%,平均百分比误差(MAPE)最低达到2.114%;在航段密度预测方面,本研究模型的MAE、RSME、MAPE最低分别为0.129%、0.162%、2.112%;并实现了时空两个维度的船舶交通流预测。【结论】本研究模型成功实现对船舶交通流脆弱性的识别和最薄弱航段的确定,具有高效的预测性能,能够精准并快速地预测船舶交通流,可为船舶通航安... 相似文献
6.
提升海上态势感知能力是构建智慧海洋的重要环节。针对目前海上目标研究单源传感器存在感知盲区,多源传感器数据关联易受杂波干扰、在密集区表现不佳等问题,本文基于合成孔径雷达(SAR)和船舶自动识别系统(AIS)数据,提出一种抗干扰性强的角度最近邻数据关联方法,充分利用SAR与AIS船舶目标的空间角度关系,提高船舶目标在密集区域点迹关联的准确性。首先,对AIS数据进行时空滤波,实现数据粗关联,构建关联分析的数据候选集;然后,从时空数据的空间关系角度出发,在灰狼优化和匈牙利算法的启发下,利用点迹对特征向量矩阵进行运算,实现对多源空间数据的优化关联;最后结合数据几何关系对结果进行置信度评估。本文选取5幅SAR影像与AIS数据进行实验,并基于SAR影像数据及船舶轨迹点分布密度设计仿真实验,结果表明,本文所提出的角度最近邻数据关联方法,在密集分布情况下,关联精度为传统NN、GNN算法的3.62和4.61倍,运行时间为1.69 s,相较于NN算法仅增长1.36 s,仅占GNN运行时间的0.49%,在运行时间增长不大的情况下具有更强的抗干扰能力,在密集区域仍能取得较好的关联效果。 相似文献
7.
港口目标识别是海事船舶监管的重中之重,船舶自动识别系统(Automatic Identification System,AIS)所获取的船舶活动信息,可为港口目标识别提供高时相和高精度的船舶航行数据。为了探究AIS数据在港口目标识别中的应用,提出一种基于多源数据和船舶停留轨迹语义建模的港口目标识别方法。通过数据挖掘和语义信息增强构建船舶停留轨迹语义模型,识别船舶港口停留轨迹;建立基于随机森林的船舶停留方式分类模型,分类船舶泊位停留轨迹和船舶锚地停留轨迹,并利用空间逐级合并方法提取港口泊位和港口锚地;综合船舶泊位停留轨迹、道路、海岸线、水深、土地利用与土地覆盖等数据,顾及情景-领域知识实现港口目标识别。基于2017年96 790艘船舶的超8300万条AIS轨迹记录,应用本文方法识别南海研究区的港口目标。实验结果表明,本文方法对于船舶轨迹停留行为总体分类精度为0.9477,Kappa系数为0.8948。提取出南海研究区447个港口区域,与Google Earth影像叠加验证结果表明,提取结果均位于真实的港口影像内,相较于Natural Earth数据集中包含的南海区域24个港口点位,提取结... 相似文献
8.
用户生成内容(User Generated Content,UGC)作为感知旅游地物质空间的新型地理大数据,以使用者的视角描绘了旅游地的客观环境,是探索旅游目的地感知的重要途径。然而,传统的旅游研究对旅行摄影照片处理能力有限,深度学习图像语义分割技术的发展,为挖掘旅游者视觉行为模式,探索旅游地环境感知提供了有力支持。本研究提出了整合在线旅行照片大数据与问卷调查小数据的旅游者视觉行为模式与感知评估框架,并将其应用于鼓浪屿案例。首先将744条旅游轨迹,聚类为6类视觉行为模式,并可视化与时空分析;其次基于全卷积网络算法,量化22 507张旅行照片语义,探索不同视觉模式的旅游者关注要素的空间分异;最后通过照片语义与场景感知问卷调查的相关性分析和多重线性回归模型,评估旅游地整体视觉感知满意度,并提出相应的空间优化建议。研究表明:(1)鼓浪屿旅游者视觉行为模式聚类为单点游、海岛风光游、环岛游、街巷空间游、遗产建筑游和全岛游6类;(2)不同视觉行为模式的旅游者视觉兴趣区存在空间集聚现象,视觉空间转移遵循地理邻近效应;(3)相关性分析与模型结果表明,旅游者偏好空间开敞度较高的区域,感知满意度越低的区域... 相似文献
9.
基于全球船舶自动识别系统(Automatic Identification System,AIS)数据的船舶轨迹异常行为快速检测对于保障船舶航行安全、辅助安全监管具有重要意义.AIS数据具有容量大、更新频率快的特点,而当前AIS轨迹异常行为检测方法依赖于大量的训练样本与历史数据,实用性与普适性较差,难以用于船舶轨迹异常行为快速检测.为此,本文定义了船舶追踪、航速、航向、位置4种异常行为检测模型,提出了一种基于卡尔曼滤波的船舶AIS轨迹异常行为检测方法,实现了船舶AIS轨迹的异常行为快速检测与报警.实验选取经过我国东海部分地区3天的AIS数据,对实验结果的正确性与耗时进行分析,结果表明模型可以满足异常即时发现、即时处理的应用需求. 相似文献
10.
本研究以北京市出租车GPS轨迹数据为例,建立了一种面向轨迹起止特征点(Origin-Destination, OD)的多比例尺可视化表达方法。首先,依据轨迹点描述信息提取OD特征点,并进行无效点清理与排除;然后,利用分布密度指标和辅助行政区划数据实施聚类分析,对OD数据分布空间进行区域划分;最后,定义参量统计各区域间OD数据隐含的流向特征,并设计专门符号进行可视化。其中,通过调整最小区域面积控制参数建立与街区、商圈、城区等不同层次地理单元相对应的区域划分,从而获得涵盖3种不同级别的OD数据多比例尺表达结果。试验结果表明,本文提出的方法能够对轨迹OD数据进行有效降维,获取不同尺度下区域间的车辆移动关系,对揭示车流人流时空交互模式及辅助决策有参考意义。 相似文献
11.
船舶自动识别系统(Automatic Identification System, AIS)不仅是海上交通监管的有效工具,也为研究海上交通运输及其相关产业活动特征提供了一种良好的数据源。基于海上渔船AIS数据,本研究利用高斯混合模型(Gaussian Mixed Model,GMM)识别渔船捕捞活动状态,提出一种将核密度估计(Kernel Density Estimation,KDE)与热点分析(Hot Spot Analysis, HSA)相融合用于渔船捕捞活动聚集区提取的方法。结果显示:与单一KDE或HSA方法相比,二者相融合的方法将KDE的距离衰减效应与HSA统计指数相结合,在渔船捕捞活动聚集区提取中的应用效果较好、效率较高;采用该融合方法,基于2018年9—12月AIS数据,实现对渤海海峡周边海域渔船捕捞活动聚集区的提取,发现不同月份,渔船捕捞活动聚集区的分布范围和空间形态特征具有一定差异性,烟威近岸海域和渤海海峡是主要的捕捞活动聚集区,其结果可为该海域捕捞活动管理和海洋生态保护提供技术方法和决策支持。 相似文献
12.
Web环境下地学数据共享用户行为模式分析 总被引:1,自引:0,他引:1
了解科学数据共享用户行为特征对实现高效、精准的数据共享服务具有重要的参考意义。本文基于国家地球系统科学数据共享平台网站服务器日志及服务记录数据,利用空间数据挖掘及Web使用挖掘技术,探索地球系统科学数据共享用户行为模式。在数据预处理阶段,完成用户识别、会话识别、位置识别,并对数据进行空间建模、空间数据库建库。在数据挖掘阶段,分别对用户产生的网页浏览数、会话数、数据集浏览数为对象进行空间“热点”分析,识别用户行为的地域差异。针对用户数据浏览和下载行为,采用FP-growth算法对用户——数据之间进行关联规则挖掘,发现用户对数据关注和使用的高频规律。分析结果表明:(1)该共享平台用户地在国内各省市均有分布,用户最多的3个省(市)分别为北京市、山东省、江苏省,该分布与国内高校学生分布相关程度不高,但与“211工程”高校学生的空间分布相关度较高;(2)空间“热点”分析表明,北京、天津及河北北部无论在网页浏览、数据浏览还是会话量上都是“热点”区域,但识别的“冷点”区域有较大不同,尤其是数据访问“冷点”分布较广,如南方沿海省份、河南省、山东省、四川省等;(3)关联规则挖掘发现多个数据浏览高频项目集以及关联规则。数据下载高频项与数据浏览高频模式较好吻合,但下载行为未表现出明显关联规则。本文提供了一种结合Web使用挖掘和空间数据挖掘的用户行为模式挖掘方法,该方法也可用于其他类型网站的数据挖掘。 相似文献
13.
网络环境下,如何让用户快速发现所需数据是地学数据共享平台长期面临的挑战之一。本文基于国家地球系统科学数据共享平台网站服务器日志数据获取用户搜索行为及数据集访问行为,使用聚类算法挖掘用户行为模式,并基于会话聚类 模式开发在线搜索和访问预测算法。在数据预处理阶段,对原始服务器日志数据进行清洗、用户识别、用户会话识别、搜索词提取。在模式挖掘阶段,采用DBSCAN算法对会话进行聚类。考虑到会话向量值的二元性,聚类算法中的距离采用Jaccard距离函数计算。视每个会话聚类包含的搜索词集合为一个文本,所有用户历史搜索词集合为语料库,统计各聚类中搜索词的TF-IDF值。在线搜索推荐,以搜索词检索各聚类中TF-IDF值,返回TF-IDF值最高的搜索词所属聚类,并给出该聚类的高频项目作为推荐。在线访问推荐,则以用户实时访问向量为查询向量,计算该向量与聚类中心的聚类。根据聚类排序,给出距离最近的聚类,并产生该聚类中高频项目作为推荐。实验结果表明基于TF-IDF和聚类的搜索推荐有较高的准确率和召回率,访问推荐效果基于高频统计的推荐有较大提高。研究可得出以下结论:① 地学共享网用户访问和搜索行为体现了专业性的特点,其行为较普通网站用户可预测性更好;② 对于地学数据共享用户行为预测,需明确定义用户行为,并采用合适的距离函数描述行为相似性;③ 通过搜索词TF-IDF值来预测用户数据需求的方法可行,以此产生的推荐可作为搜索结果的补充。本研究可服务于地学领域数据共享平台建设,提高共享服务质量,也可为其他领域科学数据共享提供技术方法借鉴。 相似文献
14.
室内定位数据记录了用户在室内空间活动的时空轨迹,是研究人群室内行为的重要信息源。室内数据时空耦合、分布复杂,可视化分析可以更好地揭示其规律。然而,与室外数据不同,室内数据具有时空粒度细、定位精度高等特点,与POI之间的空间关系更为明确,其轨迹受到室内设施和空间的制约,出现高维和不规则的特征,而这给室内行为研究提供依据的同时,又给可视化分析带来一定的挑战。现有的可视化方法主要应用于室外定位数据,关注轨迹自身的活动轨迹分析,往往忽略了所经过POI语义信息表达。针对这一问题,首先分析室内空间结构与定位数据的特征,阐述室内空间可视化分析的特殊性;在此基础上,面向室内人群的时空分布、移动模式及相关POI之间的对比、关联分析的需求,细化可视化分析的内容,明确可视化分析与展示的对象,并设计数据结构;从数据结构、可视化方法、展示图件及用户交互4个层次构建时空行为可视化分析模型;基于上述方法,采用WebGIS和WebGL技术综合设计和实现了面向商场定位的商场客流分析系统;最后,通过某一大型商场的用户定位数据进行可视化分析,从而验证了研究成果的正确性和有效性。 相似文献
15.
深入挖掘气象站点的观测降雨数据,研究区域降雨的雨型规律,对于洪涝灾害预警和减灾措施制订有重要意义.本文基于河北省2005-2017年3189个站点逐小时降雨观测数据,进行"场雨"的划定,进而提取历史上各场雨的累积雨量、时长指标.采用数据挖掘技术中的DTW相似性算法进行场雨雨型的自动归类,将场雨分成Ⅰ-Ⅶ共7种雨型,包括... 相似文献