共查询到18条相似文献,搜索用时 78 毫秒
1.
为讨论近断层地震动下摇摆-自复位(Rocking Self-Centering, RSC)桥墩连续梁的地震反应及其抗震优缺点。基于OpenSees有限元分析平台讨论了RSC桥墩三维建模方法,通过对6个试验构件的模拟,比较模拟与试验桥墩滞回曲线、预应力筋最大应力等指标,验证了模型准确性。建立设置RSC桥墩和普通钢筋混凝土(Reinforced Concrete, RC)桥墩的上部结构相同的两座连续梁桥,输入3组含有强速度脉冲的近断层地震波进行非线性动力时程分析,对比其抗震性能。结果表明:在0.4 g近断层地震动下,RSC桥墩与普通RC桥墩相比,RSC桥墩的最大位移角为普通RC桥墩的78.1%~97.6%,墩底曲率延性系数仅为普通RC桥墩的24.0%~34.0%,减小了桥墩的最大变形,也减轻了桥墩地震损伤,不利的一点是使用RSC桥墩会导致支座位移增大。RSC桥墩震后的残余位移较小,且预应力筋处于弹性受力阶段,为实现震后桥梁功能的快速恢复提供了条件。 相似文献
2.
为了提升桥梁结构的抗震韧性,提出了一种采用超弹性形状记忆合金(SMA)拉索的摇摆自复位桥墩。首先对单根SMA拉索进行变幅循环拉伸试验,随后以SMA拉索的预张拉应力为试验参数,针对新型桥墩开展缩尺模型试验,详细考察了试件的力学行为与损伤模式,讨论了桥墩的滞回曲线和复位能力;提出了新型桥墩的初步设计建议,并利用OpenSees进行非线性时程分析验证。研究表明:得益于摇摆机制以及SMA拉索良好的可恢复变形性能,桥墩试件在4%滑移率内几乎不产生损伤;与传统梁桥相比,采用SMA拉索桥墩的新型梁桥可有效降低结构残余变形以及桥墩本身的损伤。虽然最大变形有所放大,但仍处在可控范围。 相似文献
3.
为减小钢筋混凝土桥墩在地震中的损伤并且实现经济快速的震后恢复,提出一种新型预压碟簧自复位钢筋混凝土桥墩(PDS-SCCP)。文中对PDS-SCCP的整体构造和工作原理进行了详细介绍,并建立了反映其滞回特性的恢复力模型。采用ABAQUS建立PDS-SCCP的数值模型,并将ABAQUS计算结果与恢复力模型进行对比分析。结果表明:文中建立的恢复力模型能够较准确地描述PDS-SCCP的滞回特征;在往复荷载作用下,PDS-SCCP可以实现预期的工作机制,其塑性损伤集中于可更换耗能装置,混凝土墩身基本保持弹性,复位装置能够稳定地为桥墩提供恢复力。 相似文献
4.
预应力节段拼装桥墩在地震作用下具有良好的自复位能力,而既有的损伤模型无法准确评估预应力节段桥墩的地震损伤。鉴于此,有必要研究预应力节段拼装桥墩的地震损伤模型。从预应力节段桥墩的自复位特点和损伤机理出发,对自复位性能表征方法进行简化,提出采用自复位修正因子来对桥墩在地震作用下的累积耗能进行修正,从而获得考虑桥墩自复位性能的地震损伤评估模型。在此基础上,划分预应力节段拼装桥墩的损伤状态,最后验证该地震损伤模型及损伤分级方法的适用性。结果表明:预应力节段桥墩的自复位性能与耗能损伤之间呈现明显的相关性,考虑桥墩自复位的地震损伤模型和分级方法适用于不同的预应力节段拼装桥墩,为定量评估预应力节段拼装桥墩在地震作用下的损伤程度打下基础。 相似文献
5.
摇摆墙释放了墙底与基础之间的约束以实现竖向摇摆。已有研究表明:将摇摆墙与RC框架结构结合形成框架-摇摆墙结构体系能有效提高结构的整体承载力及延性,使结构的破坏发生在预期的位置,减少结构地震响应的不确定性。本文首先回顾了摇摆墙的发展历史,简要介绍了框架-摇摆墙结构的基本原理,综述了框架-摇摆墙结构的研究现状,总结了其墙体及连接节点的设计要点并对其未来的发展方向进行展望,指出框架-摇摆墙结构体系后续的研究重点可以包括:墙体与RC框架结构水平连接节点的设计、摇摆墙与基础实现理想铰接的设计、摇摆墙与预制装配式技术结合的设计及摇摆墙墙体在框架结构中布局方式的设计。 相似文献
6.
针对自复位节点钢绞线预应力损失的问题,提出了一种新型碟形弹簧自复位梁柱钢节点。介绍了该节点的构造,对该节点的力学性能进行了理论分析。采用ABAQUS建立了碟形弹簧自复位梁柱钢节点的有限元模型,根据理论分析的计算结果验证了有限元分析的准确性。分析了弹簧预压力、摩擦系数、弹簧刚度和腹板摩擦装置的螺栓预紧力对该节点受力性能的影响。结果表明:碟形弹簧自复位梁柱钢节点在低周循环荷载作用下的滞回曲线为旗帜形,具有较好的复位能力和耗能能力。弹簧预压力、摩擦系数和腹板摩擦装置的螺栓预紧力对节点开口弯矩、耗能能力和复位能力的影响较大;弹簧刚度对自复位节点开口后刚度、耗能能力和残余变形的影响较大。 相似文献
7.
为了解决现有预制桥墩施工难度大、腐蚀风险高、震后可恢复性能不足的问题,基于承插式桥墩与多节段桥墩的技术优点,提出了一种新型自复位承插式多节段预制桥墩(RSSPP),使用了高耐久性的BFRP筋和2304不锈钢钢筋,既能够充分发挥承插式节点连接可靠、现场施工简单、容许误差大的特点,同时具备良好的自复位功能。将新型RSSPP桥墩体系分为节段承重部分、后张预应力部分和耗能钢筋部分,从抗弯性能、抗剪性能、抗开合与抗倾覆性能的角度分析了桥墩力学性能,提出了承载力的简化计算方法,将理论计算与数值模拟进行对比,结果表明:数据吻合较好,验证了理论分析过程的合理性,并进一步提出了RSSPP桥墩耗能钢筋和预应力筋配筋计算公式。 相似文献
8.
自复位摇摆桥梁的损伤和残余位移小,具有良好的震后可恢复性.文中以自复位摇摆桥梁为研究对象,对不同类型地震动作用下的结构的延性需求谱及其影响因素进行研究.选用FEMA P695推荐的100条典型地震动作为输入,并划分为远场地震动、近场脉冲地震动以及近场无脉冲地震动.研究结果表明,近场脉冲地震动作用下的结构的延性需求最大,... 相似文献
9.
基于OpenSees数值分析平台,建立了群桩-土-桥墩非线性数值分析模型。模型中桩-土水平向相互作用和桩-土竖向相互作用、桩底-土竖向相互作用分别通过p-y、t-z与q-z零长度弹簧单元模拟。模型中同时考虑了群桩效应与纵筋在墩底的应变渗透和粘结滑移的影响。结合群桩基础拟静力试验结果,对数值模型的准确性进行了验证,在此基础上对土体参数特性对桩基滞回性能的影响规律进行了分析。结果表明:所建立的数值分析模型可对群桩基础滞回曲线和骨架曲线进行较为准确的模拟分析,验证了模型的可靠性。反复荷载作用下,前桩处土体的反应明显大于中桩处;土体由软黏土变为硬黏土时,墩顶侧向承载力与刚度显著增加,但土体的非线性反应减弱。 相似文献
10.
目前阻尼器运用广泛,但传统摩擦阻尼器无法适应不同的振动强度,且在地震作用后损坏严重,没有自复位功能。文章利用形状记忆合金的超弹性,提出一种新型的自复位变摩擦阻尼器,介绍了阻尼器的构造、基本工作原理并推导了其力学模型,之后对阻尼器进行了力学试验。得到如下结论:该阻尼器不仅能在不同等级地震作用下满足耗能要求,还具有良好的自复位能力;力学试验得到的滞回曲线与理论推导的力学模型吻合较好,印证了力学模型的正确性;该阻尼器耗能能力随着合金丝直径、螺栓预紧力和坡面坡度的增大而增强;残余位移随着合金丝直径和坡面坡度增大而减小、随着预紧力增大而增大。 相似文献
11.
为探讨自复位桥墩的地震反应,以某简支梁桥为工程背景,设计并制作了一个缩尺的模型桥梁。通过白噪声扫频获得了自复位桥墩的动力特性及其变化规律,选取El-Centro、Mexico和Chi-Chi强震记录作为地震动输入,进行振动台模型试验。试验记录了墩顶的加速度和位移反应,考查了地震动强度、频谱特性及预应力钢筋及其初始预加力对模型桥墩动力特性及摇摆反应的影响。试验结果表明:墩顶水平加速度反应随地震动强度及初始预加力的提高而增大,墩顶位移反应受地震动的强度、频谱特性及初始预加力大小影响较大。墩底提离面轻微损伤会明显降低体系的整体水平刚度,初始预加力则能提高体系整体水平刚度,桥墩的阻尼比随体系的水平刚度增大而减小。强震下自复位桥墩发生了预期的提离摇摆,震后墩底提离面出现轻微损伤,墩身无裂缝产生,结构具有良好的抗震及自复位性能。振动台试验结果验证已有文献的数值分析结论,振动台试验数据可用于数值模型校核或修正。 相似文献
12.
为探究锈蚀钢筋混凝土(RC)桥墩在非正交水平荷载下的抗震性能,设计制作了4个不同加载角度构件进行拟静力实验,并利用OpenSees软件构建非线性有限元纤维模型,分析不同地震动入射角对其地震易损性的影响。结果发现:拟静力实验中,加载角度偏近弱轴,最大侧向力和屈服强度降低,达到最大侧向力的位移和屈服位移减小,极限强度降低,刚度和耗能能力下降,抗震性能减弱,但对位移延性系数影响较小;易损性分析发现:RC桥墩不同破坏状态对应的失效概率随PGA增大而增大。在PGA不变时,相同破坏状态下的失效概率随地震动入射角度由强轴趋向弱轴而增大。所做工作能为锈蚀RC桥墩的地震风险评估提供试验基础。 相似文献
13.
文章提出了考虑剪切变形弹塑性刚度影响的多弹簧模型的空间梁柱单元,用于反复加载下钢构件的数值模拟。应用多轴应力状态下的塑性应力-应变关系理论,在单元模型中考虑了弹塑性区域剪切变形对单元的弹塑性刚度的影响,针对单元模型的塑性区长度和弹簧布置两个参数,文中给出了合理建议取值。数值模拟分析表明,所提出的单元模型能够很好地模拟钢构件的弹塑性性能。在此基础上,以多高层钢结构商业设计软件MTS为平台,进行三维钢框架结构弹塑性动力时程分析模块的开发。最后,文章对一纯钢框架结构足尺振动台试验进行数值模拟,模拟分析结果表明,本文所提出的多弹簧单元模型及开发的动力分析模块能够较好地模拟钢结构在地震作用下的弹塑性性能。 相似文献
14.
为了研究自复位中心支撑钢框架(SC-CBF)结构的抗震性能,对一四层SC-CBF结构进行了静力弹塑性分析、低周往复加载分析和动力弹塑性时程分析,并与中心支撑钢框架(CBF)结构进行对比,探究了不同GAP单元刚度和预应力筋截面积对SC-CBF结构自复位性能及抗震性能的影响规律。结果表明:与传统CBF结构相比,SC-CBF结构的抗侧能力强,地震作用下基底剪力小,卸载后的残余变形较小,具有良好的延性性能;在极罕遇地震作用下SC-CBF结构的位移响应大,耗散的能量多,层间位移角大而残余位移小,表现出良好的自复位性能和抗震性能;GAP单元刚度对预应力筋的受力性能影响较为明显,对结构的整体受力性能和延性性能影响较小,但结构的整体受力性能和延性性能受预应力筋截面积影响显著。 相似文献
15.
一般在进行振动台模型试验时,由于试验引起结构构件损伤,很难在试验前或试验后实测构件或节点的力学参数,但是对于整体弹性模型或部分弹性模型,可以事后对其力学性能进行实测,将实测数据用于修正计算模型,经过修正的计算结果与振动台试验结果有更好对比性。体外预应力自复位框架(EPSCF)是一种新型抗震结构,将预应力筋设置在梁柱构件体外,达到易施工、易监测、可更换的目的。在振动台试验中,EPSCF主体结构保持弹性,耗能装置损坏。振动台试验后,进行EPSCF主体结构低周反复静力试验,实测结构在侧向力作用下的滞回曲线与骨架曲线,并计算出结构每层的抗侧刚度及等效阻尼比。将实测参数代入有限元模型中进行地震响应数值模拟,并与振动台试验结果进行对比。研究结果表明,经过静力试验校准的计算模型能更好地模拟振动台试验结果。 相似文献
16.
为改善高层建筑联肢剪力墙抗震性能,消除传统连梁阻尼器残余位移较大或等效阻尼比较小等问题,设计了一种兼具耗能和自复位功能的形状记忆合金粘弹性连梁阻尼器(Shape Memory Alloy Viscoelastic Coupling Beam Damper,SVCBD),给出了新型连梁阻尼器的构造形式和工作原理。利用拉普拉斯变换得到的粘弹性材料粘性系数以及超弹性形状记忆合金(Shape Memory Alloy,SMA)本构模型,基于ABAQUS仿真平台建立了SVCBD精细有限元模型;对SVCBD滞回特性进行了模拟分析,并与普通粘弹性阻尼器进行了对比。考虑了SMA丝束初始预应力度、横截面总面积和粘弹性材料层剪切面积等参数对SVCBD滞回特性的影响。分析结果表明:与普通粘弹性连梁阻尼器(Viscoelastic Coupling Beam Damper,VCBD)相比,SVCBD滞回曲线更加饱满,耗能能力更强,残余位移减小,初始刚度也大大提高,具有很好的耗能和复位效果;SMA丝束初始预应力大小、横截面面积(即配置数量)和粘弹性材料层剪切面积均对SVCBD的耗能和复位能力具有明显的影响。 相似文献
17.
本文提出了一种新型形状记忆合金(Shape Memory Alloy,SMA)-黏弹性阻尼器(ViscoelasticDamper,VED)自复位支撑,设计了普通预应力筋自复位支撑钢框架与SMA-VED自复位支撑钢框架。采用组合模型以及改进材料模型准确模拟了支撑的力学行为,详细讨论了考虑构件失效的模拟方法,通过试验确定了VED的失效应变范围,最后基于概率统计方法进行了易损性分析以及全周期风险分析。研究发现: SMA-VED自复位支撑可显著提升框架抗震性能;倒塌风险以及残余变形超越概率均显著低于普通预应力筋自复位支撑钢框架,下降比例最高超过50%。预应力筋断裂失效导致框架倒塌风险可提高5倍以上; SMA-VED自复位支撑失效会造成残余变形超越概率有所上升但幅度不大。总体来说,SMA-VED自复位支撑钢框架具备更好的地震鲁棒性。 相似文献
18.
利用超弹性SMA螺栓梁柱节点的耗能能力和自复位特性,将其引入到耗能跨而构建"自复位耗能跨",基于既有的节点试验研究结果对结构体系的滞回性能进行了探讨。在此基础上,以具有旗形滞回特征的单自由度体系为工具,对配置自复位耗能跨低多层钢框架体系的能量系数进行推导。能量系数可以合理量化具有旗形滞回规则结构的峰值响应需求,能量系数越低,表明地震动下结构的峰值响应越低。为了阐明滞回参数对能量系数的影响,对具有不同滞回参数组合可代表低多层结构的等效SDOF体系进行了非线性动力分析,参数组合包括周期、屈服后刚度比、延性系数及能量比。同时对能量系数的离散性也进行了分析。结果表明:能量系数及能量系数的离散性受结构周期、屈服后刚度比及延性系数影响较大,受能量比的影响较小。 相似文献