共查询到7条相似文献,搜索用时 78 毫秒
1.
2.
新冠肺炎疫情作为国际性突发公共卫生事件引发了社会媒体的高度关注.微博评论内容是用户对疫情中介性事件的认知、态度、倾向和行为的汇集,为基于用户情感分析的舆情演化研究提供了高现势性和高时序性的文本语料.本文以2020年1月23日至4月8日期间"人民日报"每日疫情通报的微博评论为信息基底,首先使用中文自然语言处理工具Snow... 相似文献
3.
随着网络技术的发展,网络舆情分析在应对突发事件中发挥的作用日益显著.自然灾害发生后,准确把握舆情信息传播特征并分析其影响因素有助于应急管理部门及时采取有效的应急救援措施.本文以台风"利奇马"为例,基于"新浪舆情通"系统搜集的相关微博、微信、论坛、网站等全网舆情数据,探究台风灾害全过程舆情信息的时空分布特征,开展灾害舆情... 相似文献
4.
随着智能移动终端和社交网络应用的普及,越来越多的人愿意通过社交网络平台进行交流和表达自己的情感,因此产生了大量含有地理位置、文本内容等多种信息的用户生成数据,为大数据时代的城市研究及特定时空间内个体感知和行为活动研究提供新的数据源。本文基于2012-2014年约54万条微博用户数据,探测民众对包括春节、元宵节、清明节、端午节和中秋节在内的中国传统节日的情感表达和关注热点,以期发现在城市化与全球化影响下,人们对中国传统节日的认知变化和区域特征。通过Python 3.6进行词频分析及LDA主题模型分析可知:① 春节是中国人主题感知最为强烈的节日,且多为对新年美好祝愿的表达,其次是中秋节,以回家团聚为主,另外情人节也成为一个显性的节日;② 传统节日期间,出行方式以飞机和汽车为主,机场和高速成为与节日活动密切相关的场所;③ 共识性岁时习俗整体感知较好,但各地域特色节庆活动及饮食习俗在表现形式上有所差异,且差异在逐渐减小;④ 词频分析较好地反映了微博用户对中国传统节日的普遍感知及具有地方特色的区域差异,而LDA主题模型分析能够反映一定的传统节日主题聚类结果,但对不同节日的主题聚类效果并不十分明显。 相似文献
5.
灾害期间的舆情引导有助于维护社会稳定。社交媒体是舆论传播的重要渠道,通过微博评论了解用户的网络情感及关注的话题,可以帮助相关舆情监测部门掌握公众的关注热点,从而选择适当的干预节点来应对网络舆情,并对公众情绪进行疏导,这对于应急管理具有现实意义。现有的研究大多是利用有监督的机器学习方法进行情感分类,这需要人工进行语料的标注,工作量大。本文根据微博评论文本的特点,综合考虑情感词以及表情符号等多重情感源,构建了台风灾害领域情感词典。在此基础上,提出了一种基于情感词语义规则的情感倾向计算方法,以及基于词向量的话题聚类方法。首先,采集了近年5次台风灾害期间共计40多万条微博评论文本,基于大连理工情感词汇本体库进行扩展构建了台风灾害领域情感词典,结合PMI法构建表情符号词典,根据语义规则确定情感倾向,并使用3500条评论文本验证了该方法的有效性。然后,本文基于词向量、TF-IDF与K-means的聚类方法探索灾害期间热点话题。最后,以2020年4号台风“黑格比”为例,基于台风期间的5万余条微博评论文本进行了舆情情感分析,并识别出6类与台风相关的话题。通过时空分析发现,随着时间的推移,微博评论文本的数量发生一定变化,评论数量多的地区大都集中在沿海地区和经济水平高的地区,台风登陆当天浙江省的恐惧情感达到最高。结果表明,基于语义规则和词向量的台风灾害网络情感分析方法,能在类似灾害事件发生时为政府部门掌握和引导网络舆情提供辅助。 相似文献
6.
2019年12月以来,新冠肺炎疫情迅速席卷全球,截至北京时间2020年5月10日16时40分,全球累计确诊病例4 115 662例,已成为全球聚焦的主要话题.微博等社交媒体平台成为此次疫情相关信息传播的重要渠道和公众情绪的有效传感器之一.对微博信息进行深入挖掘分析不但能研判舆情特点,更有助于政府对公众的情绪进行针对性疏... 相似文献
7.
2020年初,新型冠状病毒肺炎(COVID-19)疫情席卷全国,疫情发展变化引发了社会各界的广泛关注.社交媒体平台作为网络舆情的重要载体,如何从中全面、准确挖掘分析网络舆情特征是疫情防控过程中的重要问题.本研究首先从舆情本体与客体时空关联的角度构建了疫情期间网络舆情多维分析模型,获取了2020年1月17日-3月17日多... 相似文献