首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Recent interest has focused on whether South Korea may have undergone variable tectonic rotations since the Cretaceous. In an effort to contribute to the answer to this question, we have completed a palaeomagnetic reconnaissance study of Early Cretaceous sedimentary and igneous rocks from the Kyongsang basin in southeast Korea. Stepwise thermal demagnetization isolated well-defined characteristic magnetization in all samples. The palaeomagnetic directions reveal patterns of increasing amounts of clockwise (CW) rotation with increasing age for Aptian rock units. Palaeomagnetic declinations indicate clockwise vertical-axis rotations of R = 34.3° ± 6.9° for the early Aptian rock unit, R = 24.9° ± 10.6° for the middle Aptian, and R = −0.9° ± 11.8° for the late Aptian relative to eastern Asia. The new Cretaceous palaeomagnetic data from this study are consistent with the hypothesis that Korea and other major parts of eastern Asia occupied the same relative positions in terms of palaeolatitudes in the Cretaceous. An analysis of and comparison with previously reported palaeomagnetic data corroborates this hypothesis and suggests that much of Korea may have been connected to the North China Block since the early Palaeozoic. A plausible cause of the rotation is the westward subduction of the Kula plate underneath the Asian continent, which is inferred to have occurred during the Cretaceous according to several geological and tectonic analyses.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
Results of palaeomagnetic investigations of the Lower Cretaceous teschenitic rocks in the Silesian unit of the Outer Western Carpathians in Poland bring evidence for pre-folding magnetization of these rocks. The mixed-polarity component reveals inclinations, between 56° and 69°, which might be either of Cretaceous or Tertiary age. Apparently positive results of fold and contact tests in some localities and presence of pyrhotite in the contact aureole suggest that magnetization is primary, although a Neogene or earlier remagnetization cannot be totally excluded since inclination-only test between localities gives 'syn-folding' results. Higher palaeoinclinations (66°–69°) correlate with a younger variety of teschenitic rocks dated for 122–120 Ma, while lower inclinations (56°–60°) with an older variety (138–133 Ma). This would support relatively high palaeolatitudes for the southern margin of the Eurasian plate in the late part of the Early Cretaceous and relatively quick northward drift of the plate in this epoch, together with the Silesian basin at its southern margin. Declinations are similar to the Cretaceous–Tertiary palaeodeclinations of stable Europe in the eastern part of the studied area but rotated ca. 14°–70° counter-clockwise in the western part. This indicates, together with older results from Czech and Slovakian sectors of the Silesian unit, a change in the rotation pattern from counter-clockwise to clockwise at the meridian of 19°E. The rotations took place before the final collision of the Outer Carpathians nappe stack with the European foreland.  相似文献   

18.
We report on a detailed palaeomagnetic study of the Miocene Farellones volcanic formation in the Chilean Andes near Santiago (two sections, 37 sites, about 400 orientated cores). Petrological observations show evidence of low-grade metamorphism increasing downwards through the volcanic sequence. Optical observations of opaque minerals and magnetic experiments suggest that in many cases maghemitization is associated with hydrothermal alteration. However, thermal demagnetization data indicate that the low-grade metamorphism did not significantly modify the direction of the primary remanent magnetization recorded at the time of emplacement of the volcanic lava flows. Four intervals of polarity with two intermediate palaeodirections were observed in the ~650-m-thick composite section. According to the dispersion of flow average directions, palaeosecular variation was slightly larger than that observed in general during the Upper Cenozoic. The site mean directions obtained in this study differ significantly from the expected Miocene direction. Clockwise rotations of up to 20° of small blocks are probably associated with the deformation of the Andean Cordillera since middle Miocene times. Geomagnetic palaeointensity data were obtained, using the Thellier method, on 24 samples from eight distinct lava flows. The flow mean VDM varies from 1.4 to 4.0 × 1022 A m−2. Altogether, our data seem to suggest the existence of a relatively low geomagnetic field undergoing large fluctuations. Although a linear relationship was observed between the natural remanent magnetization and the thermal remanent magnetization acquired during the Thellier–Thellier experiments, undetected chemical alteration of the magnetic minerals during hydrothermalism may also explain the unusually low palaeointensity obtained.  相似文献   

19.
A palaeomagnetic study of 115 samples (328 specimens) from 22 sites of the Mid- to Upper Cretaceous Bagh Group underlying the Deccan Traps in the Man valley (22°  20'N, 75°  5'E) of the Narmada Basin is reported. A characteristic magnetization of dominantly reverse polarity has been isolated from the entire rock succession, whose depositional age is constrained within the Cretaceous Normal Superchron. Only a few samples in the uppermost strata have yielded either normal or mixed polarity directions. The overall mean of reverse magnetization is D m=144°, I m=47° ( α 95=2.8°, k =152, N =18 sites) with the corresponding S-pole position 28.7°S, 111.2°E ( A 95=3.1°) and a palaeolatitude of 28°S±3°. The characteristic remanence is carried dominantly by magnetite. Similar magnetizations of reverse polarity are also exhibited by Deccan basalt samples and a mafic dyke in the study area. This pole position falls near the Late Cretaceous segment of the Indian APWP and is concordant with poles reported from the Deccan basalt flows and dated DSDP cores (75–65  Ma) of the Indian Ocean. It is therefore concluded that the Bagh Group in the eastern part of the Narmada Basin has been pervasively remagnetized by the igneous activity of Deccan basalt effusion. This overprinted palaeomagnetic signature in the Bagh Group indicates a counter-clockwise rotation by 13°±3° and a latitudinal drift northwards by 3°±3° of the Indian subcontinent during Deccan volcanism.  相似文献   

20.
A continental sequence of red beds and interbedded basaltic layers crops out in the Sierra Chica of Córdoba Province, Argentina (31.5°S, 64.4°W). This succession was deposited in a half-graben basin during the Early Cretaceous. We have carried out a palaeomagnetic survey on outcrops of this basin (147 sites in seven localities). From an analysis of IRM acquisition curves and detailed demagnetization behaviour, three different magnetic components are identified in the volcanic rocks: components A, B and X are carried by single- or pseudo-single-domain (titano) magnetite, haematite and multidomain magnetite, respectively. Component A is interpreted as a primary component of magnetization because it passes conglomerate, contact, tilt and reversal tests. The carrier of the primary magnetization, fine-grained (titano)magnetite, is present in basalts with a high degree of deuteric oxidation. This kind of oxidation is interpreted to have occurred during cooling. Components B and X are discarded because they are interpreted as recent magnetizations. In the sedimentary rocks, haematite and magnetite are identified as the carriers of remanence. Both minerals carry the same component, which passes a reversal test. The calculated palaeomagnetic pole, based on 55 sites, is Lat. 86.0°S, Long. 75.9°E ( A 95=3.3, K =35). This palaeomagnetic pole supersedes four with anomalous positions reported in previous papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号