首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J.B. Smith 《Chemical Geology》2003,194(4):275-295
Four felsic igneous rock suites in the Archaean West Pilbara have been identified based on geochemistry and geochronology. A voluminous TTG suite formed at ca. 3260 Ma, which appears to be from melting of a mafic-subducted oceanic slab and thus represents generation of new continental crust. A tholeiitic to calc-alkaline volcanic assemblage and coeval granitoids formed at ca. 3120 Ma in an extensional environment. Further TTG magmatism occurred at ca. 3000 Ma, generating both large granitoid complexes and small plutons, again adding new continental crust to the West Pilbara. At 2930-Ma crustal reworking, most likely of the 3000-Ma rocks, generated small plutons that are coeval with layered ultramafic-mafic intrusions in the region. The changes from new crustal material to crustal reworking infer changing tectonic regimes, which is important for models of Archaean continental crust generation. The data presented here indicate that crustal generation mechanisms varied and were episodic in the West Pilbara, implying that early crustal evolution was a result of periodic changes in tectonic regime, which is reflected in the geochemistry of the rocks.  相似文献   

2.
《Precambrian Research》2004,132(3):303-326
The granitoid rock dominated central Wabigoon subprovince of the Superior Province records low-K trondhjemite–tonalite–granodiorite (TTG) type magmatic episodes at <2.83–2.74 and 2.722–2.709 Ga, and high-K mafic to felsic plutonism at 2.690–2.685 Ga. High-K units consist of granite to granodiorite dykes and sills, a K-feldspar megacrystic granodiorite suite of sanukitoid affinity and a suite of mafic dykes and intrusions. Initial ϵNd values (−3.1 to +3.3) indicate variable input to all units from light REE-enriched older crustal materials. The δ18O (VSMOW) range of felsic compositions (+7.1 to +8.9%) overlaps closely that of average upper Superior Province crust. The granite/granodiorite units probably received melt components derived from both older tonalitic crust and isotopically juvenile supracrustal material. The thermal flux for partial melting was provided by mafic components of the coeval megacrystic granodiorite suite. This latter suite likely formed by extensive crustal assimilation and fractionation of enriched-mantle-derived high-Mg dioritic magmas in a post-collisional setting, possibly resulting from slab breakoff or broader scale lithospheric delamination. A genetic link is inferred between mafic magmatism and the late- to post-tectonic high-K granitoid magmatism that typically represents the last stabilization event within Superior subprovinces. That crustal recycling processes played a major role in the petrogenesis of central Wabigoon high-K granitoid suites is consistent with other evidence that supports repeated and substantial continental recycling within this subprovince as far back as the Mesoarchean.  相似文献   

3.
《地学前缘(英文版)》2020,11(3):895-914
A section from the Linglong gold deposit on the northwestern Jiaodong Peninsula,East China,containing Late Mesozoic magmatic rocks from mafic and intermediate dikes and felsic intrusions,was chosen to investigate the lithospheric evolution of the eastern North China Craton(NCC).Zircon U-Pb data showed that low-Mg adakitic monzogranites and granodiorite intrusions were emplaced during the Late Jurassic(~145 Ma) and late Early Cretaceous(112-107 Ma),respectively;high-Mg adakitic diorite and mafic dikes were also emplaced during the Early Cretaceous at~139 Ma and ~118 Ma,and 125-145 Ma and 115-120 Ma,respectively.The geochemical data,including whole-rock major and trace element compositions and Sr-Nd-Pb isotopes,imply that the mafic dikes originated from the partial melting of a lithospheric mantle metasomatised through hydrous fluids from a subducted oceanic slab.Low-Mg adakitic monzogranites and granodiorite intrusions originated from the partial melting of the thickened lower crust of the NCC,while high-Mg adakitic diorite dikes originated from the mixing of mafic and felsic melts.Late Mesozoic magmatism showed that lithosphere-derived melts showed a similar source depth and that crust-derived felsic melts originated from the continuously thickened lower crust of the Jiaodong Peninsula from the Late Jurassic to Early Cretaceous.We infer that the lower crust of the eastern NCC was thickened through compression and subduction of the Palaeo-Pacific plate beneath the NCC during the Middle Jurassic.Slab rollback of the plate from ~160 Ma resulted in lithospheric thinning and accompanied Late Mesozoic magmatism.  相似文献   

4.
The Vestfold Block, like other Archaean cratons in East Antarctica and elsewhere, consists predominantly of felsic orthogneiss (Mossel and Crooked Lake gneisses), with subordinate mafic granulite (Tryne metavolcanics) and paragneiss (Chelnok supracrustals). Two major periods of continental crust formation are represented. The Mossel gneiss (metamorphosed about 3,000 Ma ago) is mainly of tonalitic composition, and is similar to much of the roughly coeval Napier Complex in Enderby Land. The Crooked Lake gneiss was emplaced under high-grade conditions about 2,450 Ma ago and comprises a high proportion of more potassic rocks (monzodioritic and monzonitic suites), as well as tonalite and minor gabbro and diorite. Both Mossel and Crooked Lake gneisses are depleted in Y and have moderate to high Sr, Ce/Y, and Ti/Y, consistent with melting of a mafic source (?subducted hydrated oceanic crust) leaving major residual hornblende (± garnet). Most Crooked Lake gneisses are more enriched in incompatible elements (P, Sr, La, Ce, and particularly Rb, Ba, and K) than Mossel gneisses, suggesting derivation from a more enriched mafic source. The Vestfold Block contains few orthogneisses derived by melting of older felsic crustal rocks, in marked contrast to the Archaean Napier Complex and, in particular, southern Prince Charles Mountains. Both Mossel and Crooked Lake tonalites are strongly depleted in Rb, K, Th, and U, and have very low Rb/Sr and high K/Rb; more potassic orthogneisses are depleted in Th, U, and, to lesser extents, Rb. Tryne metavolcanics are depleted in Th and Rb, but appear to have been enriched in K (and probably Na), possibly during early low-grade alteration.  相似文献   

5.
The detrital zircon population in quartzitic conglomerates from the northern Tanzania Craton yield ages between 2640 Ma and 2790 Ma which includes most of the igneous history from this part of the craton. The igneous evolution is characterised by mafic volcanism with an oceanic plateau‐like geochemical signature at ~2800 Ma followed by diorite and tonalite–trondhjemite–granodiorite dominated magmatism between 2790 and 2700 Ma, which transitioned into more evolved high‐K magmatism between 2700 and 2620 Ma. The εHf values of the detrital zircons range from +2.4 to ?1.4 and change with time from radiogenic Hf pre‐2700 Ma (98% positive εHf) to unradiogenic Hf post‐2700 Ma (41% positive εHf). The petrological progression from mafic to felsic crust is reflected in the detrital age distribution and Hf isotopes and is consistent with juvenile mafic crust slowly maturing into more evolved felsic crust through a series of successive partial melting events in an oceanic‐plateau‐like environment.  相似文献   

6.
The c. 2·97–2·95 Ga magmatic history ofthe Mallina Basin, in the Pilbara Craton of NW Australia, includeswhat is perhaps the most lithologically diverse magmatism ofany similar-sized Archaean terrain, and is unusual for similar-sizedterrains of any age. The magmatism includes light rare earthelement (LREE)-rich basaltic rocks, LREE-rich gabbros and rockswith boninite-like compositions (collectively the ‘Mallinamafic suite’), and high-Mg diorites (sanukitoids). TheMallina mafic suite is characterized by high primitive mantlenormalized (La/Nb)PM (>3) and (La/Yb)PM (>2), and non-radiogenicNd-isotopic compositions (  相似文献   

7.
The Quérigut mafic–felsic rock association comprisestwo main magma series. The first is felsic comprising a granodiorite–tonalite,a monzogranite and a biotite granite. The second is intermediateto ultramafic, forming small diorite and gabbro intrusions associatedwith hornblendites and olivine hornblendites. A U–Pb zirconage of 307 ± 2 Ma was obtained from the granodiorite–tonalites.Contact metamorphic minerals in the thermal aureole providea maximum emplacement pressure of between 260 and 270 MPa. Petrographiccharacteristics of the mafic and ultramafic rocks suggest crystallizationat <300 MPa, demonstrating that mantle-derived magmas ascendedto shallow levels in the Pyrenean crust during Variscan times.The ultramafic rocks are the most isotopically primitive components,with textural and geochemical features of cumulates from hydrousbasaltic magmas. None of the mafic to ultramafic rocks havedepleted mantle isotope signatures, indicating crustal contaminationor derivation from enriched mantle. Origins for the dioritesinclude accumulation from granodiorite–tonalite magma,derivatives from mafic magmas, or hybrids. The granitic rockswere formed from broadly Proterozoic meta-igneous crustal protoliths.The isotopic signatures, mineralogy and geochemistry of thegranodiorite–tonalites and monzogranites suggest crystallizationfrom different magmas with similar time-integrated Rb/Sr andSm/Nd isotope ratios, or that the granodiorite–tonalitesare cumulates from a granodioritic to monzogranitic parent.The biotite granite differs from the other felsic rocks, representinga separate magma batch. Ages for Quérigut and other Pyreneangranitoids show that post-collisional wrenching in this partof the Variscides was under way by 310 Ma. KEY WORDS: Variscan orogeny; Pyrenees; Quérigut complex; epizonal magmatism; post-thickening; mafic–felsic association  相似文献   

8.
The majority of continental crust formed during the hotter Archean was composed of Tonalite-Trondhjemite-Granodiorite (TTG) rocks. In contrast to the present-day loci of crust formation around subduction zones and intra-plate tectonic settings, TTGs are formed when hydrated basalt melts at garnet-amphibolite, granulite or eclogite facies conditions. Generating continental crust requires a two step differentiation process. Basaltic magma is extracted from the pyrolytic mantle, is hydrated, and then partially melts to form continental crust. Here, we parameterise the melt production and melt extraction processes and show self-consistent generation of primordial continental crust using evolutionary thermochemical mantle convection models. To study the growth of TTG and the geodynamic regime of early Earth, we systematically vary the ratio of intrusive (plutonic) and eruptive (volcanic) magmatism, initial core temperature, and internal friction coefficient. As the amount of TTG that can be extracted from the basalt (or basalt-to-TTG production efficiency) is not known, we also test two different values in our simulations, thereby limiting TTG mass to 10% or 50% of basalt mass. For simulations with lower basalt-to-TTG production efficiency, the volume of TTG crust produced is in agreement with net crustal growth models but overall crustal (basaltic and TTG) composition stays more mafic than expected from geochemical data. With higher production efficiency, abundant TTG crust is produced, with a production rate far exceeding typical net crustal growth models but the felsic to mafic crustal ratio follows the expected trend. These modelling results indicate that (i) early Earth exhibited a “plutonic squishy lid” or vertical-tectonics geodynamic regime, (ii) present-day slab-driven subduction was not necessary for the production of early continental crust, and (iii) the Archean Earth was dominated by intrusive magmatism as opposed to “heat-pipe” eruptive magmatism.  相似文献   

9.
深部过程对埃达克质岩石成分的制约   总被引:45,自引:18,他引:27  
埃达克岩、太古宙TTG和中国东部广泛出露的燕山期埃达克质中酸性火山-侵入岩在岩石地球化学特征方面有许多相似之处,也有一些显著的差异。与典型的埃达克岩相比,太古宙TTG具有相对高Si和低Mg^#的特点:中国东部埃达克质岩石多表现为低Mg^#贫A120,和高K特征。埃达克岩相对高Mg^#是由于俯冲洋壳部分熔融产生的原生埃达克岩熔体受到了地幔橄榄岩的混染,太古宙TTG多无明显的地幔混染印记,反映其可能主要形成于下地壳底侵玄武岩的部分熔融,而与洋壳俯冲没有直接联系。中国东部埃达克质岩石相对低Mg^#畜K,暗示其可能是下地壳底侵玄武岩部分熔融或拆沉-熔融的产物,而幔源富钾熔体的混合、壳内分异和混染过程都有可能影响其成分特征中国东部部分地区的高镁埃达克质岩石可能揭示了下地壳拆沉一熔融和地幔混染过程。钾质埃达克岩的源区可能是被小比例软流圈熔体交代富集的底侵玄武岩层(增厚的下地壳)。结合燕山期岩浆作用和构造转换的特点来看,埃达克岩的形成是中国东部晚中生代岩石圈强烈减薄和大规模岩浆作用产物的一部分,这一重大构造体制的转换可能与地幔柱上涌对岩石圈的侵蚀和导致的伸展作用有关。  相似文献   

10.
The Neoarchaean Tati granite–greenstone terrane occurs within the southwestern part of the Zimbabwe craton in NE Botswana. It comprises 10 intrusive bodies forming part of three distinct plutonic suites: (1) an earlier TTG suite dominated by tonalites, trondhjemites, Na-granites distributed into high-Al (Group 1) and low-Al (Group 2) TTG sub-suite rocks; (2) a Sanukitoid suite including gabbros and Mg-diorites; and (3) a younger high-K granite suite displaying I-type, calc-alkaline affinities.

The Group 1 TTG sub-suite rocks are marked by high Sr/Y values and strongly fractionated chondrite-normalized rare earth element (REE) patterns, with no Eu anomaly. The Group 2 TTG sub-suite displays higher LREE contents, negative Eu anomaly and small to no fractionation of HREE. The primordial mantle-normalized patterns of the Francistown TTGs are marked by negative Nb–Ti anomalies. The geochemical characteristics of the TTG rocks are consistent with features of silicate melts from partial melting of flat subducting slabs for the Group 1 sub-suite and partial melting of arc mafic magmas underplated in the lower crust for the Group 2 sub-suite. The gabbros and high-Mg diorites of the Sanukitoid suite are marked by Mg#>0.5, high Al2O3 (>>16%), low TiO2 (<0.6%) and variable enrichment of HFSE and LILE. Their chondrite-normalized REE patterns are flat in gabbros and mildly to substantially fractionated in high-Mg diorites, with minor negative or positive Eu anomalies. The primordial mantle-normalized diagrams display negative Nb–Ti (and Zr in gabbros) anomalies. Variable but high Sr/Y, Sr/Ce, La/Nb, Th/Ta and Cs/La and low Ce/Pb ratios mark the Sanukitoid suite rocks. These geochemical features are consistent with melting of a sub-arc heterogeneously metasomatised mantle wedge source predominantly enriched by earlier TTG melts and fluids from dehydration of a subducting slab. Melting of the mantle wedge is consistent with a steeper subduction system. The late to post-kinematic high-K granite suite includes I-type calc-alkaline rocks generated through crustal partial melting of earlier TTG material. The Neoarchaean tectonic evolution of the Zimbabwe craton is shown to mark a broad continental magmatic arc (and related accretionary thrusts and sedimentary basins) linked to a subduction zone, which operated within the Limpopo–Shashe belt at 2.8–2.65 Ga. The detachment of the subducting slab led to the uprise of a hotter mantle section as the source of heat inducing crustal partial melting of juvenile TTG material to produce the high-K granite suite.  相似文献   


11.
ABSTRACT

Appinite complexes preserve evidence of mantle processes that produce voluminous granitoid batholiths. These plutonic complexes range from ultramafic to felsic in composition, deep to shallow emplacement, and from Neo-Archean to Recent in age. Appinites are a textural family characterized by idiomorphic hornblende in all lithologies, and spectacular textures including coarse-grained mafic pegmatites, fine-grained ‘salt-and-pepper’ gabbros, as well as planar and linear fabrics. Magmas are bimodal (mafic-felsic) in composition; ultramafic rocks are cumulates, intermediate rocks are hybrids. Their geochemistry is profoundly influenced by a mantle wedge extensively metasomatized by fluids/magmas produced by subduction. Melting of spinel peridotite sub-continental lithospheric mantle (SCLM) produces appinites whose geochemistry is indistinguishable from coeval low-K calc-alkalic arc magmatism. Coeval felsic rocks within appinite complexes and adjacent granitoid batholiths are crustal magmas. When subduction terminates, asthenospheric upwelling (e.g. in a slab window, or in the aftermath of slab failure) induces melting of metasomatized garnet SCLM to produce K-rich sho shonitic magmas enriched in large ionic lithophile and light relative to heavy rare earth elements, whose asthenospheric component can be identified by Sm-Nd isotopic signatures. Coeval late-stage Ba-Sr granitoid magmas have a ‘slab failure’ geochemistry, resemble TTG and adakitic suites, and are formed either by fractionation of an enriched (shoshonitic) mafic magma, or high pressure melting of a meta-basaltic protolith either at the base of the crust or along the upper portion of the subducted slab. Appinite complexes may be the crustal representation of mafic magma that underplated the crust for the duration of arc magmatism. They were preferentially emplaced along fault zones around the periphery of the granitoid batholiths (where their ascent is not blocked by overlying felsic magma), and as enclaves within granitoid batholiths. When subduction ceases, appinite complexes with a more pronounced asthenospheric component are preferentially emplaced along active faults that bound the periphery of the batholiths.  相似文献   

12.
The Jurassic Bonanza arc, on Vancouver Island, British Columbia, represents an exhumed island arc crustal section of broadly diorite composition. We studied bodies of mafic and ultramafic cumulates within deeper levels of the arc to constrain the conditions and fractionation pathways leading from high-Mg basalt to andesite and dacite. Major element trends coupled with textural information show the intercumulus crystallization of amphibole, as large oikocrysts enclosing olivine in primitive cumulates controls the compositions of liquids until the onset of plagioclase crystallization. This process is cryptic, occurring only in the plutonic section, and explains the paucity of amphibole in mafic arc volcanics and the change in the Dy/Yb ratios in many arc suites with differentiation. The correlation of octahedral Al in hornblende with pressure in liquidus experiments on high-Mg basalts is applied as an empirical barometer to hornblendes from the Bonanza arc. It shows that crystallization took place at 470–880 MPa in H2O-saturated primitive basaltic magmas. There are no magmatic equivalents to bulk continental crust in the Bonanza arc; no amount of delamination of ultramafic cumulates will shift the bulk arc composition to the high-Mg# andesite composition of bulk continental crust. Garnet removal from wet magmas appears to be the key factor in producing continental crust, requiring high pressures and thick crust. Because oceanic island arcs are built on thinner crust, the long-term process generating the bulk continental crust is the accretion of island arcs to continental margins with attendant tectonic thickening.  相似文献   

13.
There is no consensus on the processes responsible for near-coeval formation of Archaean continental crust (dominantly tonalite-trondhjemite-granodiorite: TTG), greenstone belts dominated by komatiitic to tholeiitic lavas (KT), and sub-continental lithospheric mantle (SCLM). The Douglas Harbour domain (2.7-2.9 Ga) of the Minto Block, northeastern Superior Province, has two TTG suites, the western and eastern Faribault-Thury (WFT and EFT), with embedded KT greenstones. Tonalites of both suites have high light/heavy rare-earth element ratios (L/HREE), high large ion lithophile element (U-Th-Rb-Cs-La: LILE) contents, positive Sr-Pb anomalies, and negative Nb-Ta-Ti anomalies. Such typical Archaean TTG signatures are commonly explained by melting of subducted oceanic crust, but could also originate by melting the base of thick basaltic plateaux formed above mantle upwellings (plumes), leaving behind restites containing pyroxene, garnet, and rutile. Field relationships (in situ segregation veins), phase equilibria (hornblende stabilized at lower crustal pressure), petrography (corroded epidote and muscovite phenocrysts, rare plagioclase phenocrysts), and trace element models, all imply that FT tonalite to trondhjemite evolution reflects hornblende-dominated fractional crystallization, not partial melting of subducted crust. The geochemistry of parental FT tonalites can be modeled by 15-30% melting of FT tholeiitic metabasalts, with residues of eclogite, garnet-websterite, or hornblende-garnet websterite. A minor residual Ti-phase such as rutile is also needed to generate negative Ti-Nb-Ta troughs in the TTGs. However, large volumes of eclogitic restites complementary to TTG are not observed either at the base of Archaean crustal sections, or in the SCLM. Additional problems with slab-melting models include: (a) the rarity of lithologies and associations characteristic of active margins (ophiolites, andesites, blueschists, accretionary mélanges, molasse, flysch, high-pressure belts, and thrust-and-fold belts); (b) the need to deliver plume-derived KT melt through the slab; and (c) extracting enough TTG melt from a subducting slab in the time available (200-300 my). In the plateau-melting model, heat for crustal anatexis is supplied by ongoing KT magma derived from mantle upwellings. However, SCLM rocks differ from predicted 1-stage mantle melting residua; and the voluminous residual eclogites complementary to TTG generation somehow need to be removed. These two problems might solve one another if the dense crustal restites disaggregated and mixed into the underlying depleted mantle. Mantle melting slows upon exhaustion of Ca-Al-rich phases, with large temperature increases needed to extract more melt from harzburgite residua. Physical addition of delaminated crustal restites would refertilize the refractory mantle, allowing extraction of additional melt increments, and might explain the ultra-depleted and orthopyroxene-rich nature of the SCLM. A hybrid source composed of 10% eclogitic restite of EFT tonalite generation, mixed with harzburgitic residues from 25% melting of primitive mantle, yields model melts with trace element signatures resembling typical Munro komatiites. Variations in the mineralogy and geochemistry of the delaminated component might account for the diversity of komatiite types. Degassing of hornblende-rich delaminated restites would transfer LILE to surrounding depleted mantle and could generate boninites. Fusion of undepleted metabasalt sandwiched among denser restites could generate sanukitoids. Mantle melt pulses generated by catastrophic delamination events would underplate nascent TTG crust and trigger renewed crustal melting, followed by delamination of newly formed eclogitic restites, triggering additional mantle melting, and so on. I posit that delamination of crustal restites catalyzed multi-stage melting of the SCLM and maturation of the Archaean continental crust. Thus, Archaean crust and SCLM are genetically inter-linked, and both form above major mantle upwellings.  相似文献   

14.
深熔作用是大陆地壳分异、元素迁移富集和混合岩化作用的主要机制和关键地质过程.吉南地区出露的太古宙基底普遍经历了角闪岩相-麻粒岩相变质及深熔作用,长英质淡色体及淡色花岗岩广泛分布.吉南和龙花岗-绿岩地体出露的太古宙变质石英闪长岩及相关的长英质浅色体和含斜方辉石(角闪石)淡色伟晶花岗岩的野外地质特征、相互关系及岩相学特征指...  相似文献   

15.
The geological setting, geochemistry, and Nd isotopic systematics of tonalite-trondhjemite-granodiortite (TTG) series in ancient cratons are considered. It is shown that the TTG series were formed from ∼4.2 to 2.6 Ga ago in the oldest continental cores; many TTG series do not reveal chronological links to greenstone belts. This follows from the evolution of the Slave Craton in the Canadian Shield, the Vodlozero Craton in the Baltic Shield, and the Pilbara and Yilgarn cratons in the Australian Shield, where greenstone associations postdated TTG series. As has been established at the Baltic Shield, the primary melts of the Mesoarchean TTG associations were formed at a shallower depth (P < 15 kbar) compared to the Neoarchean TTG, likely, due to the increasing thickness of the continental crust beneath the Baltic Shield over time.  相似文献   

16.
Zircon from lower crustal xenoliths erupted in the Navajo volcanic field was analyzed for U–Pb and Lu–Hf isotopic compositions to characterize the lower crust beneath the Colorado Plateau and to determine whether it was affected by ∼1.4 Ga granitic magmatism and metamorphism that profoundly affected the exposed middle crust of southwestern Laurentia. Igneous zircon in felsic xenoliths crystallized at 1.73 and 1.65 Ga, and igneous zircon in mafic xenoliths crystallized at 1.43 Ga. Most igneous zircon has unradiogenic initial Hf isotopic compositions (ɛHf=+4.1–+7.8) and 1.7–1.6 Ga depleted mantle model ages, consistent with 1.7–1.6 Ga felsic protoliths being derived from “juvenile” Proterozoic crust and 1.4 Ga mafic protoliths having interacted with older crust. Metamorphic zircon grew in four pulses between 1.42 and 1.36 Ga, at least one of which was at granulite facies. Significant variability within and between xenoliths in metamorphic zircon initial Hf isotopic compositions (ɛHf=−0.7 to +13.6) indicates growth from different aged sources with diverse time-integrated Lu/Hf ratios. These results show a strong link between 1.4 Ga mafic magmatism and granulite facies metamorphism in the lower crust and granitic magmatism and metamorphism in the exposed middle crust.  相似文献   

17.
Analysis of 3.3 Ga tonalite–trondhjemite–granodiorite (TTG) series granitoids and greenstone belt assemblages from the Bundelkhand craton in central India reveal that it is a typical Archaean craton. At least two greenstone complexes can be recognized in the Bundelkhand craton, namely the (i) Central Bundelkhand (Babina, Mauranipur belts) and (ii) Southern Bundelkhand (Girar, Madaura belts). The Central Bundelkhand greenstone complex contains three tectonostratigraphic assemblages: (1) metamorphosed basic or metabasic, high-Mg rocks; (2) banded iron formations (BIFs); and (3) felsic volcanics. The first two assemblages are regarded as representing an earlier sequence, which is in tectonic contact with the felsic volcanics. However, the contact between the BIFs and mafic volcanics is also evidently tectonic. Metabasic high-Mg rocks are represented by amphibolites and tremolite-actinolite schists in the Babina greenstone belt and are comparable in composition to tholeiitic basalts-basaltic andesites and komatiites. They are very similar to the metabasic high-Mg rocks of the Mauranipur greenstone belt. Felsic volcanics occur as fine-grained schists with phenocrysts of quartz, albite, and microcline. Felsic volcanics are classified as calc-alkaline dacites, less commonly rhyolites. The chondrite-normalized rare earth element distribution pattern is poorly fractionated (LaN/LuN = 11–16) with a small negative Eu anomaly (Eu/Eu* = 0.68–0.85), being characteristic of volcanics formed in a subduction setting. On Rb – Y + Nb, Nb – Y, Rb – Ta + Yb and Ta – Yb discrimination diagrams, the compositions of the volcanics are also consistent with those of felsic rocks formed in subduction settings. SHRIMP-dating of zircon from the felsic volcanics of the Babina belt of the Central Bundelkhand greenstone complex, performed for the first time, has shown that they were erupted in Neoarchaean time (2542 ± 17 Ma). The early sequence of the Babina belt is correlatable with the rocks of the Mauranipur belt, whose age is tentatively estimated as Mesoarchaean. The Central Bundelkhand greenstone complex consists of two (Meso- and Neoarchaean) sequences, which were formed in subduction settings.  相似文献   

18.
The Archaean craton of Zimbabwe includes two major episodesof crust generation at 3.5 and 2.9 Ga recorded in the emplacementof tonalite-gneiss granitoids. A total of 180 samples of representativegneisses and massive tonalites and sills has been collectedfrom three areas in the southern part of the craton, at Mashaba,Chingezi, and Shabani. These rocks have been analysed for major,trace, and rare earth elements to evaluate the effects of thefractional crystallization and partial melting processes inthe generation of this segment of Archaean crust. Three groups are distinguished on the basis of their major andtrace element contents, and they follow two main trends of differentiation:the sodic and the calc-alkaline (sensu stricto) trends. GroupI samples are tonalitic in composition and follow a sodic trendcharacterized by decreasing CaO/Na2O ratios. Y and Sr behaveas compatible elements and are negatively correlated with Rb.REE patterns are moderately fractionated with La/Ybn=4–23.5.The characteristics of this group have been described only inthe Archaean craton from Swaziland. Group II is an intermediateGroup with a marked decrease in Na2O/K2O with increasing differentiation,similar to the Archaean tonalite-trondhjemite-granodiorite suitesfrom Finland or the Pilbara Block, Australia. Samples displaybiotite tonalite and trondhjemite compositions, and Y, Sr, andRb are all incompatible. The REE patterns are strongly fractionated,with La/Ybn=23–44, and with small positive or negativeEu anomalies, as observed in other Archaean tonalite-trondhjemites.Group III is composed mainly of trondhjemites and granites similarto many post-Archaean granitoids: they follow a calc-alkalinetrend (sensu stricto) with decreasing CaO/Na2O and Na2O/K2O.Sr and Y are incompatible, whereas Rb increases with differentiation.REE patterns are variably fractionated, with La/Ybn=6–36,with high REE contents, and marked negative Eu anomalies. The above geochemical features are explained in a three-stagepetrogenetic model. The first stage consists of 6–20%melting of upper-mantle peridotite and the generation of tholeiiticbasalts, as observed in the associated greenstone belts. Thesecond stage involves 4–25% partial melting of metamorphosedbasalts with a Gt amphibolite (15–45% Pl + 30–50%Hb+2–35% Cpx+3– 15% Gt) residue resulting in theGroup I samples, under water-unsaturated conditions at intermediatepressure (16 kbar), or with an eclogite residue to generatethe parental magmas for the Group II rocks. The third stageis lowpressure fractional crystallization (<8 kbar) of liquidsgenerated during this second stage, leaving a 19–20% Qtz+36–42%Pl0–2% HbMt cumulate for the more evolved Group II samples,and 55% fractional crystallization of a 14% Qtz+37.6% Pl (An26)3.3%Bt+0.1% Ilm0.8% Mt cumulate for Group III samples. The highlyfractionated REE patterns of the Group II rocks are inheritedfrom the second stage of partial melting of the metamorphosedbasalt source rocks with an eclogite residue. Thus Group IIand III initial liquids were generated through partial meltingof eclogite and Gt amphibolite, respectively. The genetic relationshipsbetween Group I sodic and Group III calc-alkaline suites areevaluated, with the latter resulting from various stages offractional crystallization processes of parental magmas withinthe sodic suite.  相似文献   

19.
The North China Craton (NCC) preserves the history of crustal growth and craton formation during the early Precambrian followed by extensive lithospheric thinning and craton destruction in the Mesozoic. Here we present evidence for magma mixing and mingling associated with the Mesozoic tectonic processes from the Central NCC, along the Trans-North China Orogen, a paleo suture along which the Eastern and Western Blocks were amalgamated at end of Paleoproterozoic. Our investigations focus on two granitoids – the Chiwawu and the Mapeng plutons. Typical signatures for the interaction of mafic and felsic magmas are observed in these plutons such as: (1) the presence of diorite enclaves; (2) flow structures; (3) schlierens; (4) varying degrees of hybridization; and (5) macro-, and micro-textures. Porphyritic feldspar crystals show numerous mineral inclusions as well as rapakivi and anti-rapakivi textures. We present bulk chemistry, zircon U–Pb geochronology and REE data, and Lu–Hf isotopes on the granitoids, diorite enclaves, and surrounding basement rocks to constrain the timing of intraplate magmatism and processes of interaction between felsic and mafic magmas. Our LA-ICP-MS zircon U–Pb data show that the pophyritic granodiorite was emplaced at 129.7 ± 1.0 Ma. The diorite enclaves within this granodiorite show identical ages (128.2 ± 1.5 Ma). The basement TTG (tonalite–trondhjemite–granodiorite) gneisses formed at ca. 2.5 Ga coinciding with the major period of crustal accretion in the NCC. The 1.85 Ga age from zircons in the gabbro with positive Hf isotope signature may be related to mantle magmatism during post-collisional extension following the assembly of the Western and Eastern Blocks of the NCC along the Trans-North China Orogen. Our Hf isotope data indicate that the Neoarchean–Paleoproterozoic basement rocks were derived from complex sources of both juvenile magmas and reworked ancient crust, whereas the magma source for the Mesozoic units are dominantly reworked basement rocks. Our study provides a window to intraplate magmatism triggered by mantle upwelling beneath a paleosuture in the North China Craton.  相似文献   

20.
A series of linked extensional detachments, transfer faults, and sediment- and volcanic-filled half-grabens that pre-date regional folding are described in the Late Archaean Margaret anticline, Eastern Goldfields Province, Yilgarn Craton, Western Australia. Coeval structures and rock units include layer-parallel extensional detachments, transfer faults (high-angle rotational faults rooted in the detachments and linking layer-parallel shear zones with varying amounts of extension); felsic intrusions, either as granitoids emplaced in or below the detachments, or as fine-grained intrusive bodies emplaced above the detachments and controlled by the high-angle faults; and half-grabens controlled by the high-angle faults and filled with clastic sedimentary and volcanic rocks. At least 1500 m of section is excised across the detachments. The detachments and high-angle faults are folded by the east-northeast regional compression that formed the Margaret anticline. Extensional deformation in the Margaret anticline is correlated with the regionally recognised felsic magmatism and associated volcanic and volcaniclastic basin fill dated at approximately 2685–2670 Ma across the Eastern Goldfields Province. This suggests the extensional event was province-wide and post-dated initial greenstone deposition (at around 2705 Ma) but pre-dated regional compressive deformation. We suggest the extension is the result of a thermal anomaly in the crust, generated by the insulating effect of a thick pile (of the order of 10 km or greater) of mafic and ultramafic volcanic rocks on precursor Archaean felsic crust. The thermal anomaly has generated renewed production of felsic and mafic volcanic rocks, coeval with uplift and extension in the upper crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号