首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the relationship between solar activity and cosmic ray modulation, time series of the nucleonic flux and of solar plages, sunspots, centimeter radio noise, and the brightness of the white light corona at 1.1 and 1.5 solar radii from the center of Sun are cross-correlated. Data pertain to the years 1964–1967 during the ascending phase of the current solar cycle. The amplitudes and phases of correlation functions for filtered and unfiltered indices are discussed. The existence of a superior solar index for relating solar activity to long-term modulation is not yet demonstrated conclusively, and the time lag of modulation is too poorly determined to permit its use in estimating the radius of the modulation region.Presently at the Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
From line-shift observations in two spectrum lines it is determined that the downward motions observed in plages may represent a real downward transport of material, not an apparent downward flow due to brightness or ionization differences in a multistream velocity model.  相似文献   

3.
A. A. Galal 《Solar physics》1983,85(1):123-129
On the basis of photoelectric observations, the center-to-limb variations of the brightness of restricted areas (≈0.5″ × 7.0″) of unresolved facular granules were determined at different frequencies in the lines λ5183 Å and λ5172 Å of Mgi. It was found that the chromospheric plages reach maximum intensity in the central parts of the lines at the same position on the solar disk where photospheric faculae have maximum brightness. The floccular emission is conspicuous in the cores of the lines up to a distance Δλ = 0.02 Å. In the portion of the lines corresponding to 0.02 Å < Δλ < 0.18 Å the contrast of flocculi decreases to a minimum value and then increases again in the inner wings of these lines. In the far wings the contrast of facular areas systematically decreases to the continuum values.  相似文献   

4.
Double pass photoelectric observations are presented of five Caii lines (H, K, 8498 Å, 8542 Å, and 8662 Å) in a number of solar plages of different degrees of activity, quiet regions, and a sunspot. The data are compared with previous work. All five lines show increasing emission together in plages and the least opaque of the infrared triplet lines appears to exhibit core emission prior to the more opaque members of the multiplet. The question of source function equality is considered and the differences and similarities among plage profiles and between plage and quiet profiles are shown qualitatively and quantitatively.Staff Member, Laboratory Astrophysics Division, National Bureau of Standards.Visiting Astronomer at Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy. Inc., under contract with the National Science Foundation.  相似文献   

5.
The separation of the leading and following portions of plages and (multi-spot) sunspot groups is examined as a parameter in the analysis of plage and spot group rotation. The magnetic complexity of plages affects their average properties in such a study because it tends to make the polarity separations of the plages less than they really are (by the definition of polarity separation used here). Correcting for this effect, one finds a clear and very significant dependence of the total magnetic flux of a region on its polarity separation. Extrapolating this relationship to zero total flux leads to an X intercept of about 25 Mm in polarity separation. The average residual rotation rates of regions depend upon the polarity separation in the sense that larger separations correspond to slower rotation rates (except for small values of separation, which are affected by region complexity). In the case of sunspots, the result that smaller individual spots rotate faster than larger spots is confirmed and quantified. It is shown also that smaller spot groups rotate faster than larger groups, but this is a much weaker effect than that for individual spots. It is suggested that the principal effect is for spots, and that this individual spot effect is responsible for much or all of the group effect, including that attributed in the past to group age. Although larger spot groups have larger polarity separations, it is shown that the rotation rate-polarity separation effect is the opposite in groups than one finds in plages: groups with larger polarity separations rotate faster than those with smaller separations. This anomalous effect may be related to the evolution of plages and spot groups, or it may be related to connections with subsurface toroidal flux tubes. It is suggested that the polarity separation is a parameter of solar active regions that may shed some light on their origin and evolution.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

6.
7.
An examination of the tilt angles of multi-spot sunspot groups and plages shows that on average they tend to rotate toward the average tilt angle in each hemisphere. This average tilt angle is about twice as large for plages as it is for sunspot groups. The larger the deviation from the average tilt angle, the larger, on average, is the rotation of the magnetic axis in the direction of the average tilt angle. The rate of rotation of the magnetic axis is about twice as fast for sunspot groups as it is for plages. Growing plages and spot groups rotate their axes significantly faster than do decaying plages and spot groups. There is a latitude dependence of this effect that follows Joy's law. The fact that these tilt angles move toward the average tilt angle and not toward 0 deg (the east-west orientation), combined with other results presented here, suggest that a commonly accepted view of the origin of active region magnetic flux at the solar surface may have to be re-examined.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

8.
Using a newly developed Aerospace digital videomagnetograph, three solar active regions are studied as to their magnetic configurations and their flare productivity. These three regions have very different types of magnetic configurations and different types of flare productivity. We review previous theoretical and experimental research on flares and magnetic energy storage, and discuss various ways to observe magnetic energy release due to flares. Results for six subflares are presented. Five showed no measurable magnetic energy change and one result is questionable.We show three counterexamples to Zirin's (1972) contention that as a rule H plage brightness is proportional to magnetic field strength. Each of these three cases involved two plage regions of the same polarity and equal field strengths with one of the plages adjacent to a neutral line. In all three cases the plage region nearer the neutral line was much brighter.  相似文献   

9.
This paper summarizes the analysis of the radio observations of the solar eclipse at wavelengths 3.2, 11.1 and 21 cm in Xinjiang, on 1968 Sept. 22. From the observations, we have determined the flux densities, angular diameters and heights of the localized radio sources on the solar disk, circumstances of the radio eclipse, equivalent radius of the radio Sun and certain features of a small radio burst that occurred during the eclipse. We have also investigated the correlation between the flux density of the localized sources and the activity of the active regions, as measured by the integrated brightness of plages and the sunspot area.  相似文献   

10.
An analysis of Ca II spectroheliograms obtained at Catania Observatory in the period 1967–1970 shows that plages rotate - in their first four days of lifetime - with a latitudinal differential rotation profile steeper than for older objects.A closer inspection reveals that plages slow down with age in some latitude strips, and accelerate in some others. That makes the profiles of old and young objects highly different from each other. In particular, the empirical laws of solar rotation usually adopted, appear to be inadequate to describe so complex a phenomenon as the rotation of these magnetic features. A close correspondence has been found between the latitudes at which plages accelerate (slow down) and the latitudes of westward (eastward) streams (Howard and LaBonte, 1980).Some implications of these results, in the light of the theory of a direct coupling of magnetic features to deep layers, are discussed.In the years concerned, Ca-plages of whatever age show differential rotation profiles steeper than in other phases of the solar cycle.  相似文献   

11.
Coronal holes     
Coronal holes are extensive regions of extremely low density in the solar corona within 60° of latitude from the equator. (They are not to be confused with the well-known coronal cavities which surround quiescent prominences beneath helmet streamers.) We have superposed maps of the calculated current-free (potential) coronal magnetic field with maps of the coronal electron density for the period of November 1966, and find that coronal holes are generally characterized by weak and diverging magnetic field lines. The chromosphere underlying the holes is extremely quiet, being free of weak plages and filaments. The existence of coronal holes clearly has important implications for the energy balance in the transition region and the solar wind.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
The line-centre-magnetogram technique has been used to measure the average velocity in magnetic elements in plages and isolated magnetic elements (including dipoles) in Ca ii 8542, Mg i 5183, Fe i 8688 and C i 9111. The velocities vary from 0.6 km s–1 downflow in the line of deepest origin to zero in the highest. The smooth curve obtained by combining these with the results of other investigators is in conformity with Giovanelli's (1977) theory of inflow in the neighborhood of the temperature minimum.This material is based upon research supported by the National Science Foundation under its contract No. AST 74-04129 with the Association of Universities for Research in Astronomy, Inc., for management, operation and maintenance of the Kitt Peak National Observatory.Visiting Astronomer, Kitt Peak National Observatory.  相似文献   

13.
Separate Mount Wilson plage and sunspot group data sets are analyzed in this review to illustrate several interesting aspects of active region axial tilt angles. (1) The distribution of tilt angles differs between plages and sunspot groups in the sense that plages have slightly higher tilt angles, on average, than do spot groups. (2) The distributions of average plage total magnetic flux, or sunspot group area, with tilt angle show a consistent effect: those groups with tilt angles nearest the average values are larger (or have a greater total flux) on average than those farther from the average values. Moreover, the average tilt angles on which these size or flux distributions are centered differ for the two types of objects, and represent closely the actual different average tilt angles for these two features. (3) The polarity separation distances of plages and sunspot groups show a clear relationship to average tilt angles. In the case of each feature, smaller polarity separations are correlated with smaller tilt angles. (4) The dynamics of regions also show a clear relationship with region tilt angles. The spot groups with tilt angles nearest the average value (or perhaps 0-deg tilt angle) have on average a faster rotation rate than those groups with extreme tilt angles.All of these tilt-angle characteristics may be assumed to be related to the physical forces that affect the magnetic flux loop that forms the region. These aspects are discussed in this brief review within the context of our current view of the formation of active region magnetic flux at the solar surface.Dedicated to Cornelis de JagerOperated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

14.
Mount Wilson synoptic data of both plages and sunspots are examined in an effort to determine in some detail the manner of the appearance and disappearance of the magnetic flux of active regions at the solar surface. Separating regions into leading and following portions by magnetic polarity in the case of the plages and by position in the case of sunspots (for which there is no magnetic information available in this data set), various characteristics of these features are studied, namely their rotation, their relative longitudinal motions, and the east-west inclinations of their magnetic fields. The evidence, taken together, suggests that the magnetic flux loops which comprise a region rise to the surface at the time of its formation, and (at least some of them) sink back below the surface at the time of the decay of the region. It is likely that not all the magnetic flux that arises sinks again below the surface.Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

15.
We use the Zirin-Frazier-McIntosh rules to interpret the plages and flares of Region 16398 (1979 November) as shown on Hα filtergrams taken at the Purple Mountain Observatory. The coupled equations of wave and flow fields are used to explain the vertical heating of plages. We think the observed long thin filament is the result of turbulent heating along a horizontal magnetic tube.  相似文献   

16.
A list of solar spectral lines in the wavelength 4300–6700 exhibiting large Stokes V amplitudes in observed spectra of active region plages and the quiet network is presented.Visiting astronomer at National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

17.
Zhao  X.P.  Hoeksema  J.T.  Kosovichev  A.G.  Bush  R.  Scherrer  P.H. 《Solar physics》2000,193(1-2):219-225
A novel emission feature resembling moss was first identified in high-resolution TRACE Feix/x 171 Å images by Berger et al. (1999). The moss emission is characterized by dynamic arc-second scale, bright elements surrounding dark inclusions in images of solar active regions. Patches of moss elements, called moss regions, have a scale of 20–30 Mm. Moss regions occur only above some of magnetic plages that underlie soft X-ray coronal loops. Using the potential field extrapolation of the photospheric magnetic field into the corona, we find that the magnetic field lines in moss-associated magnetic plages connect with adjacent plages with opposite polarity; however, all field lines from mossless plages end in surrounding quiet regions. This result is consistent with the idea that the TRACE moss is the emission from the upper transition region due to heating of low-lying plasma by field-aligned thermal conduction from overlying hot plasma (Berger et al., 1999).  相似文献   

18.
Riddle  A. C. 《Solar physics》1974,39(1):153-154
The observations of a brief flaring region between two plages on the eastern limb of the Sun and the subsequent coronal transient are reported for June 16, 1972 by Koomen et al. (1974). Both of these events have unambiguous and closely timed associations with the solar noise bursts observed at 2800 and 2700 MHz and are also accompanied with good X-ray and SID effects but faint subflare (Solar-Geophysical Data). The two frequencies are those monitored at widely separated stations operated by the Astrophysics Branch of the National Research Council at Lake Traverse, Ontario and at Penticton, B.C.  相似文献   

19.
The eclipse of May 20, 1966 was observed at the wavelengths of 3.2 and 9.1 cm by three Arcetri expeditions. The curves obtained by deriving the occultation curves have been filtered by digital techniques to cut off high frequency noise; by them, many characteristics of three sources of the S-component present on the disk have been studied: temperature, dimensions, emitted flux and brightness distribution. Isophotes of the latter are compared with isophotes of the corresponding H plages for two sources: a close similarity results for one of them. Moreover it is shown that: (a) the height above the photosphere of the sources at = 9.1 cm is greater than that of the sources at = 3.2 cm; (b) the maximum of the radio emission is not always placed exactly above a sunspot or above the sunspot group barycentre.Fitting the observed brightness temperatures, as frequency functions, by a power law and using a temperature model of an active region, the electron density distribution can be deduced. The obtained electron density distributions are compared with various models of active regions.  相似文献   

20.
High resolution photographic magnetograms are compared with H filtergrams (both on- and off - band) for a wide variety of solar features. It is verified that H filaments overlie neutral lines or bands and that H plages always occur at magnetic field clumps. However, the brightness of H plages bear no relation to magnetic field strength or polarity, and the direction of the magnetic field with respect to threads and filaments remains obscure. Counter-examples can be found for virtually every rule that has been formulated so far.Basic questions about the usefulness and final research goal of filtergrams and magnetograms are raised. It is shown that neither filtergram or magnetogram alone is capable of furnishing a unique solution. It is suggested that the proper direction for research is to use magnetograms, together with (as yet unspecified) additional sources of data, to understand H structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号