共查询到19条相似文献,搜索用时 64 毫秒
1.
受成像光谱仪性能与复杂地物分布的影响,高光谱图像存在大量的混合像元。传统的基于学习的混合像元分解方法通常都是浅层模型,或缺少对空间、光谱信息的综合应用。本文提出一种多维卷积网络协同的混合像元分解深层模型,采用多种维度卷积网络能更充分利用多种维度语义信息,有利于估计小样本和高维的高光谱图像混合像元丰度。对训练数据进行增广处理,构建光谱维、空间维和立方体3种卷积神经网络;设计了融合层,协同3种卷积神经网络提取特征,"端到端"的估计混合像元丰度值;模型使用了批量归一化、池化和Dropout方法避免过拟合现象。试验结果表明,多维卷积网络协同方法的引入能更有效地提取空-谱特征信息,与其他的卷积网络解混模型相比,估计的混合像元丰度精度有显著提高。 相似文献
2.
受成像光谱仪性能与复杂地物分布的影响,高光谱图像存在大量的混合像元。传统的基于学习的混合像元分解方法通常都是浅层模型,或缺少对空间、光谱信息的综合应用。本文提出一种多维卷积网络协同的混合像元分解深层模型,采用多种维度卷积网络能更充分利用多种维度语义信息,有利于估计小样本和高维的高光谱图像混合像元丰度。对训练数据进行增广处理,构建光谱维、空间维和立方体3种卷积神经网络;设计了融合层,协同3种卷积神经网络提取特征,“端到端”的估计混合像元丰度值;模型使用了批量归一化、池化和Dropout方法避免过拟合现象。试验结果表明,多维卷积网络协同方法的引入能更有效地提取空-谱特征信息,与其他的卷积网络解混模型相比,估计的混合像元丰度精度有显著提高。 相似文献
3.
4.
5.
高光谱与多角度数据联合进行混合像元分解研究 总被引:8,自引:0,他引:8
混合像元问题是定量遥感的主要障碍之一。将混合像元问题归结为类内与类间像元混合两类,并对类内混合像元分解问题加以研究。混合像元分解的关键在于确定组分光谱,确定组分光谱的方法很多,但大多数方法基于以下假定,即从图像本身可以找到纯组分光谱,然而这一假定对于类内混合像元分解问题来说很难成立。提出采用高光谱与多角度相结合的方法,利用几何光学模型和线性光谱混合模型进行类内混合像元分解。即首先利用多角度数据反演几何光学交互遮蔽(GOMS)模型获得组分光谱,再对高光谱数据进行组分光谱分解。由于该方法直接从混合光谱产生的机理出发,因而更容易获得真正的亚像元信息。为减小反演误差,反演过程中采用改进的多阶段的反演策略,并充分利用多角度图像本身提供的先验信息。用BORE—AS试验获取的高光谱与多角度数据所作的研究表明,该方法可以获得比较理想的分解结果。 相似文献
6.
本文对SOM神经网络算法进行改进,在标类的过程中采用3个策略加以控制,对初始产生的自组织映射图进行调整。通过改进,那些映射到可靠神经元的像素得到了很好的分类,而那些映射到不可靠神经元的像素都被作为不可分像元而提取出来。继而,从混合像元分解的角度来对这些不可分像元进行处理,按类型分解的思想确定混合像元的类别,实现对不可分像元的分类。将SOM神经网络和混合像元分解相结合的分类方法应用于高光谱图像的分类中,通过实验表明了该方法能较好地改善分类效果,提高分类精度。 相似文献
7.
提出了基于交互最小二乘优化的高光谱影像端元光谱计算方法,利用ALS计算的灵活性将多种对组分丰度和被估计光谱的约束条件加入到ALS迭代计算中,以传统算法得到的端元光谱作为初始,并考虑数据的特殊性建立了适合于高光谱影像的端元分析方法。模拟数据分析和Cuprite矿区的光谱分析结果证明了本文算法能很好地处理不严格假设纯光谱存在情况下的端元提取问题。 相似文献
8.
9.
10.
利用稀疏促进原理以及高光谱影像端元提取传统算法,结合线性光谱混合模型,提出了一种采用稀疏促进的高光谱影像端元提取方法.该方法不需要预先对端元数量进行估计,也不需要假设影像中存在纯像元.利用模拟数据以及真实高光谱影像对提出方法、ICE算法和NMF算法进行了对比实验分析.实验结果表明:提出方法能稳定地从影像中提取端元并同时... 相似文献
11.
12.
针对非负矩阵盲信号分离(NMF)用于混合像元分解易陷入局部极小值的不足,将非监督端元提取与盲分解方法相结合,构建了一种基于目标端元修正的混合像元盲分解模型(ATGP-NMF)。ATGP-NMF模型利用非监督正交子空间投影算法(ATGP)和非负最小二乘法(NNLS)获取NMF盲分离的初始值,然后将获得初始目标端元光谱与丰度输入NMF模型,通过迭代运算不断逼近优化目标而得到最终的端元光谱和端元丰度。为了检验模型对于各类数据的有效性和适用性,将ATGP-NMF与传统NMF分别应用于模拟仿真数据、室内控制数据和真实遥感影像3类实验数据进行分析验证。结果表明,ATGP-NMF模型具有较好的适用性,在没有先验信息、先验信息很少,以及纯像元假设不存在情况下都能较好地分解混合像元,且能够更好克服局部极小问题,提高混合像元分解的精度。 相似文献
13.
端元提取技术是混合像元分解中重要的步骤之一,传统的端元提取方法仅考虑了像元的光谱信息.本文将数学形态学算子扩展到高光谱空间,并应用到端元提取技术中,可以顾及像元的上下文信息.利用AVIRIS高光谱仿真数据对算法进行了实验验证,结果表明本文算法具有较强的抗噪能力和较高的可靠性.在此基础上,结合徐州地区的EO-1 Hyperion高光谱遥感图像,使用本文算法进行了端元提取应用研究,将实验结果与纯净像元指数、顶点成分分析方法做了对比分析和精度评价,证明本文算法是一种可靠的高光谱遥感图像端元提取技术. 相似文献
14.
高光谱图像端元提取算法研究进展与比较 总被引:2,自引:0,他引:2
高光谱图像中混合像元的存在不仅影响了基于遥感影像的地物识别和分类精度,而且已经成为遥感科学向定量化方向发展的主要障碍。本文分析和研究了现有的典型端元提取算法,在此基础上,对这些算法进行归纳总结,从是否假定纯像元存在角度将其分为两类:端元识别算法和端元生成算法,并就两种分类方法选取了具有代表性的6种典型端元提取算法:N-FINDR、VCA、SGA、OSP、ICE和MVC-NMF算法进行分析和实验。通过对这6种方法的实验比较,得出两种端元提取分类方法的优点与不足,并对今后的研究工作提出展望。 相似文献
15.
16.
高光谱影像中存在大量的混合像元,极大地限制了高光谱影像的定量应用,高效且精准地进行像元解混尤为重要。端元矩阵的初始化、算法本身的代价函数及其迭代规则,三者的不同往往会导致获取的最终端元光谱和端元丰度的不同。在不同条件下,选取适当的初始化方法、代价函数和迭代规则,使得高光谱解混结果更优尤为重要。本文改进了一种基于欧氏距离和光谱信息散度的分块初始化方法(IBISS),改进后方法在中低信噪比情况下优于其他初始化方法。同时针对初始化、算法本身这两个方面进行大量试验,结果表明:①分块初始化优于全局初始化;②梯度迭代NMF算法相比于乘性迭代NMF算法,具有更快的收敛速度,但容易陷入局部最小值;③乘性迭代分块NMF算法相比于乘性迭代标准NMF算法能够获取更好的端元丰度信息;④梯度迭代分块NMF算法不适用于随机初始化后的光谱解混过程。 相似文献
17.
18.
监督分类方法是海冰遥感监测中常用的有效方法,但不同的监督分类方法以及波段选择,在海冰识别中的精度有较大差异.为提高海冰监测的精度,本文使用高光谱传感器提供的可见光、近红外波段的连续成像光谱信息,对比了不同的波段组合在多种分类方法中海冰提取的精度,分析了不同波段组合、不同分类方法在海冰监测上的优缺点,最终得出海冰监测中最佳的波段组合以及最适宜的监督分类方法. 相似文献
19.
高光谱遥感图像的端元递进提取算法 总被引:1,自引:1,他引:1
针对高光谱遥感图像中可能并不存在图像端元这一问题,试探的提出一种基于线性混合模型下对初步提取的最近似于端元的像元进行再分析的端元提取算法,即高光谱遥感图像的端元递进提取算法.首先针对3个端元线性混合的图像进行提取,在图像中找到最大近似于端元的像元,利用凸面单形体的几何性质,找出初步提取像元附近位于图像端元构成的凸面单形体边界上的像元,通过计算图像端元在边界像元中的含量,应用线性反解提取出图像端元.模拟图像中的初步结果表明在不存在图像端元的图像中,该算法可以有效的提取3个端元,应用于实际Hyperion图像取得了较好的实验效果. 相似文献